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1 SVM Classification and underlying
optimization problem

1.1 Binary Classification Problem

Binary classification in machine learning is a prob-
lem where the objective is to learn a classification
rule that assigns one of two possible discrete labels
to each data instance in a dataset. Given a set of
training points {(xi, yi)mi=1}, where each xi 2 Rn is
a feature vector and yi 2 �1, 1 is the binary label.
The goal is to find a function f : Rn

! {�1, 1}.
that can accurately predict label of new, unseen data
[1]. Task is to train a hyperplane < w, x > +b =

w1x1+w2x2+...wnxn+b = 0 with variable w 2 Rn

and bias b 2 R to be approximated based on training
dataset on both synthetic and real dataset. Synthetic
and real dataset generation is as detailed in Appendix
4.2 and Zhou [2].

1.2 Sparse SVMs

To obtain an optimal hyperplane, a conventional ap-
proach to solve this is soft-margin SVM optimization
for inseparable training datasets in the input space.
Extensive research has been conducted on the design
of loss functions ` for soft-margin SVMs [3, 4, 5,
6]. This gives rise to the Hinge loss function. To
address this problem, the dual kernel-based SVM is
usually used. However, solutions to the dual kernel-
based SVM optimization are not sufficiently sparse.
Consequently, extensive research follows for invest-
igating methods for data reduction on Sparse SVMs
[7, 8, 9]. Sparse SVMs exploit intrinsic sparsity in
the data by imposing an `1-norm regularization in the
loss function, which tends to produce a solution with
many 0 coefficients, effectively reducing number of
support vectors. This aligns with concept that only a
subset of training samples, support vectors have sig-
nificant impact on decision boundary. Reduction in
number of support vectors decreases model complex-
ity, which translates to less memory usage and faster
prediction times.

In this problem, we focus on this following soft-
margin SVM, which is the foundation of the the

sparsity constrained kernel based optimization prob-
lem formulation in Equation 1, detailed in Section
1.3:

min
w2Rn,b2R

1

2
||w||2 +

mX

i=1

`cC [1� yi(< w, xi > +b)]

(1)
where the dual problem of Equation 1 is:

min
↵2Rm

D(↵) := d(↵) +
mX

i=1

hcC(↵i), s.t.
mX

i=1

↵iyi

(2)
where the squared Hinge loss, hcC is described by
Equation 3 below. Based on Zhou [2]’s (Theorem
2.1), the primal loss is reduced to squared Hinge loss
from hinge loss when c ! 0:

hcC(t) :=

(
t2

2C , t � 0

t2

2c , t < 0
(3)

1.3 Sparsity Constrained Kernel-based
Optimization Problem

Detailed by Zhou [2] and extended research on sparse
SVMs, the dual problem of the soft-margin SVM op-
timization becomes:

min
↵2Rm

1

2
kQ↵k

2
+

mX

i=1

hc,C (↵i)� h1,↵i =: D(↵),

s.t. h↵,yi = 0, k↵k0 6 s,

where an user-aligned integer s 2 Nm is less than m
and is called the sparsity level and ||↵||0 is number
of non-zero elements of ↵. Here, as shown above in
Equation 3:

hc,C(t) :=
t2

2
[C⇢(t > 0) + c⇢(t < 0)]

�1 (4)

where C > c > 0 are two parameters and ⇢(t 2 S)
is an indicator function. When t 2 S, this returns
1 and 0 otherwise. Based on Equation 3 and 4, this
implies a given penalty of 1/C for ↵i > 0 and 1/c
for ↵i < 0. If c ! 0, then ↵i > 0, i 2 Nm. We
will be working with a type of dual formulation of
the soft-margin optimization formulation with sparse
SVMs.



1.3.1 Properties of Optimization Problem
Compared to the conventional dual problem of soft-
margin SVM optimization, which is the quadratic ker-
nel SVM optimization shown here:

min
↵2Rm

1

2
kQ↵k

2
� h↵,1i

s.t. h↵,yi = 0, 0 6 ↵i 6 C, i 2 Nm

(5)

where Q := [y1x1, · · · , ymxm] 2 Rn⇥m,y :=

(y1, . . . , ym)
>

2 Rm,1 := (1, · · · , 1)> 2 Rm

and Nm := {1, · · · ,m}, For the quadratic kernel
optimization problems, it is good to understand that
the challenge that it poses is that the matrix Q

T
Q

has m ⇥ m-order, which makes it challenging to
train on 10

6 data and incurs large computational cost
[9]. Complexity of computing this kernel is around
O(m2n). Therefore, dimensionality reduction has
been attempted by researchers to train SVMs on
smaller datasets [10]. This is also why we have util-
ized this dual problem coined the sparsity constrained
kernel SVM optimization problem.

Our problem in Section 1.3, has 3 substantial ad-
vantages:

1. The objective function exhibits strong convex-
ity, therefore, this ensures the existence of op-
timal solutions, and might be unique under mild
conditions, as proved by Zhou [2]. The object-
ive objective function shown in Equation 5 is
convex, but not strongly convex when n � m
as Q 2 Rn⇥m. This indicates numerous op-
timal solutions due to dimensionality of space
Q 2 Rn⇥m

2. As there is no longer fixed constraints this
simplifies the computational process, making it
more feasible. The bounded constraints of Equa-
tion 5 might lead to significant increase in com-
putational demands.

3. Sparsity constraint ||↵||0  s which specifies
vector ↵ should have at most s non-zero com-
ponents. This implies that model is expected to
use no more than s support vectors, such as rep-
resented by the Representer Theorem:

w = Q↵ =

mX

i=1

↵iyixi

2 Optimization method and convergence
theory

2.1 Choice of Optimization Method
The appropriate method chosen for solving the sta-
tionary equations in 6, is subspace Newton method.

The justifications for this choice as laid below in the
consequent subsections. Firstly, as demonstrated by
[11, 12, 13], this Newton method variant, is not only
computationally efficient, but also ensures rapid con-
vergence. A good thing to note is this method sur-
passes the conventionally observed locally quadratic
convergence property of Newton methods by guaran-
teeing convergence to an equilibrium point in one it-
eration, provided the initial guess ⌘-stationary point
is sufficiently close as outlined in Zhou [2]’s Theorem
3.1. The method also address the issue of determining
the appropriate number of support vectors through s
which is the sparsity level. It is worth mentioning that
although deciding arbitrary number s is challenging,
the method includes an innovative way to adjust s,
called sparsity level tuning. As shown by the author,
CPU time for large scale datasets with 10

5 size, the
method took approximately 0.04 seconds, faster than
Lagrangian SVMs [14] and Fuzzy SVMs [15] (both
0.10s) with a standardised synthetic benchmark.

It is stated by the author that while the exact prox-
imity of starting point to an ⌘-stationary point is
not clear, the method succeeds across various start-
ing points which suggests a degree of insensitivity to
these initial conditions. Once the method/ algorithm
is in the neighbourhood of an ⌘-stationary point, it is
capable of determining local, and potentially global
minimum depending on sparsity level s and relation
of ⌘⇤ to the penalty parameter C. Thus, algorithm’s
design not only facilitates finding local minima but
also under certain parameters and conditions, ensures
a global minimizer. Notably, Zhou [2] has shown the-
oretical one-step convergence result as defined in his
paper and in Section 2.5.

Furthermore, as this is a Newton method derivat-
ive, multiple attempts at subspace Newton method
have theoretically proven that this subspace Newton
method has global convergence under certain assump-
tions and the convergence rate is the same as of the
full regularized Newton method or traditional Newton
Methods [11, 12, 13]. For example, Fuji, Poirion and
Takeda [11] has theoretically and empirically proven
that Randomized Subscape Newton method (RSN)
has also shown to achieve a global linear convergence
for strongly convex f. Additionally, subspace New-
ton methods are expected to be highly computation-
ally efficient compared to traditional Newton method,
since it does not require computation of the full Hes-
sian inverse.



2.2 Groundwork: List of Notations

Table 1: Glossary of Symbols
Notation Details
[m] Set containing sequential integers from 1

to m.
|T | Cardinality or the count of elements

within set T .
T Complementary set consisting of indices

not included in a specific index set.
↵T A vector formed by selecting elements of

↵ corresponding to indices in set T .
|↵| Vector with absolute values of elements

from ↵.
k↵k[s] The s-th highest value within the vector

↵.
supp(↵) Set containing indices where elements of

↵ are non-zero.
y A vector of m labels or classes associated

with the samples.
X Data matrix with m samples as rows and

n features as columns.
Q Matrix obtained by element-wise multi-

plication of each label in y with the cor-
responding row in X .

QT A matrix with columns chosen from Q
based on indices in set T .

Q�,T A matrix with rows and columns of Q�

indexed by set T .
I Identity matrix of appropriate size.
P Resultant matrix after adding the inverse

of the regularization constant C times the
identity matrix to QTQ.

1 Vector consisting entirely of ones, with
the dimension context-dependent.

N(↵, �) The �-neighborhood around vector ↵,
which includes all vectors within a dis-
tance of �.

{u} Set containing the vector u.

2.3 Subspace Newton Method

Compared to the traditional Newton method, which
computes the Newton step in the entire space of vari-
ables, which can be computationally intensive, the
subspace Newton method selects a lower-dimensional
subspace in which to perform the optimization. The
method is based on finding an ⌘-stationary point for
the optimization task. A point z⇤ = (p⇤, b⇤) (detailed
below) with p⇤ being a solution within the sparsity
constraints of the problem is termed an ⌘-staitonary
point if it satisfies a set of conditions characterized by
system of equations F (z⇤;T ⇤

= 0 below. In essense,

the ⌘-staitonary point brings b⇤, the Lagrangian mul-
tiplier which acts as a bias in this SVM formulation.
By satisfying the ⌘-stationary point conditions, one
can find solutions to both primal and dual forms of
the problem simultaneously.
This diverges from the traditional Newton methods
by focusing on the subspace of problem defined by
the non-zero components of p⇤, constrained by the
sparsity level.
Theorem 1 [2]: A point z⇤ is an ⌘-stationary point of
optimization problem for some ⌘ > 0 if and only if
there is a T⇤ 2 Ts(↵⇤

� ⌘g(z⇤)) such that:

F (z⇤;T⇤) =

2

4
gT ⇤(↵⇤

)

↵⇤
T̄⇤

h↵⇤
T⇤
, yT⇤i

3

5

=

2

4
HT ⇤(↵⇤

)↵⇤
T⇤

� 1 + yT⇤µ
⇤

↵⇤
T̄⇤

h↵⇤
T⇤
, yT⇤i

3

5 = 0 (6)

The notion of an ⌘-stationary point in optimization is
captured by a set of equations reflecting the balance
between the objective function’s gradient and the con-
straints. For a point to be ⌘-stationary, it must sat-
isfy these Equations 6 within a particular subspace.
Hence, with proof of conditions in Zhou [2](Section
2.11), this enables us to utilize Newton method. Ad-
ditionally, if point z is ⌘-stationary point of Equation
3, the dual SVM problem, for some ⌘ > 0, then
T 2 Ts(↵ � ⌘g(z)), the Jacobian matrix of this sys-
tem:

rF (z;T ) =

2

4
HT (↵) 0 yT

0 I 0

yTT 0 0

3

5 (7)

retains non-singularity, ensuring the robustness of
the Newton method’s iterative steps. This is
due to congruence of rF (z;T ) to a non-singular
matrix as HT (↵) is positive semi-definite and
yTT (HT (↵))�1yT > 0.

2

4
HT (↵) 0 yT

0 I 0

0 0 yTT (HT (↵))�1yT

3

5

This attribute arises from the positive semi-definite
nature of the Hessian of the objective function, ren-
dering the convergence mechanism of the Newton
method both reliable and effective. With zk defined
as 

↵k

µk

�



, and approximate solution to stationary equations 6,
we gain:
2

4
HTk(↵

k
) 0 YTk

0 I 0

Y T
Tk

0 0

3

5

2

4
dkTk

dk
T̄k

dkm+1

3

5 = �

2

4
gTk(z

k
)

↵k
T̄k

(↵k
Tk
, YTk)

3

5 .

With the direction, Newton step size is taken and
brings out:

zk+1
= zk+dk =

2

4
↵k
Tk

↵k
T̄k

µk

3

5+

2

4
dkTk

dk
T̄k

dkm+1

3

5 =

2

4
↵k
Tk

+ dkTk

0

µk
+ dkm+1

3

5 .

Therefore, the algorithm is summarised in the
pseudocode below.

Algorithm [2] NSSVM: Subspace Newton method
with adaptively tuning s for sparse SVMs

Input: Give parameters C, c > 0, ⌘ > 0, r > 1,
MaxACC = 0, s0 2 Nm, Tol and MaxIt.

Initialize: z0, pick T0 2 Ts0(↵
0
� ⌘g(z0)) and

set k := 0.

while (kF (zk;Tk)k � Tol or |ACC(↵k
) �

MaxACC| > 10
�4

) and (k < MaxIt) do

Update dk by solving (3.2).
Update zk+1 by (3.3).
Update MaxACC =

max{ACC(↵1
), . . . ,ACC(↵k�1

)}.

Update sk+1 = rsk if k is a multiple of 10
and sk+1 = sk otherwise.
Update Tk+1 2 Tsk+1(↵

k+1
� ⌘g(zk+1

))

and set k := k + 1.

end while

return the solution zk.

2.4 Local and Global Convergence Properties
Zhou [2] claims that subspace Newton method
demonstrates one step convergence to a local min-
imizer under certain conditions as stated above. The
proofs in his paper implies that under the right con-
ditions, one might expect a type of convergence that
is at least Q-linear due to iterative improvement at
each step, possibly Q-superlinear if updates align well
with the conditions of the ⌘-stationary point, leading
to rapid improvement towards optimum. Local quad-
ratic convergence might also be inferred, as this is a
second-order method (using second derivatives), like
the traditional Newton method.

Based on Zhou [2]’s observations for the objective
function here:

D(↵) :=
1

2
||Q↵||2 +

mX

i=1

hc,C(ui)� h1,↵i

The gradient rD(↵) and Hessian H(↵) are:

rD(↵) := H(↵)↵� 1

H(↵) := QTQ+ E(↵)

where E(↵) is diagonal matrix, as shown in []:

Eii(↵) := (E(↵))ii =
n

1
C ,↵i � 0, 1c ,↵i < 0.

By Mercer’s Theorem, Hessian matrix is positive def-
inite for any ↵ 2 Rm. Let H(↵) ⌫ 1

CQ
TQ+I where

⌫ denotes the matrix being positive semi-definite, in-
dicating that D(↵) is a strongly convex function and
therefore inherits certain properties useful for optim-
ization. Specifically, for any ↵,↵0

2 Rm, where
t 2 [0, 1] and by the mean value theorem [16], we
have:

D(↵) � D(↵0
) + hrD(↵0

),↵� ↵0
i

+
1

2
h↵� ↵0, H(↵̄)(↵� ↵0

)i (8)

with ↵̄ = ↵ + t(↵0
� ↵) for some t 2 [0, 1] and ↵̄

guaranteed by the mean value theorem. We define z
as a concatenation of ↵ and the Lagrange multipli-
ers µ, and similarly for z⇤ and zk. We then denote
functions g(z) and gT (z), corresponding to the gradi-
ent of D and the sub-vector of g, respectively, with
HT (↵) representing the sub-principal matrix of H(↵)
indexed by T .
Based on Zhou [2]’s Theorem 2.4 laid out below, both
local and global convergence can be expected for this
sparsity constrained optimization problem:
Theorem 2.4: Given the problem in Equation 3 and a
point ↵⇤ that fulfills k↵⇤

k0  s and (↵⇤, y) = 0, the
following statements are proposed:

(a) A point ↵⇤ becomes a local minimizer if it is an
⌘-stationary point for a particular ⌘ > 0.

(b) ↵⇤ is regarded as a local minimizer if it is an ⌘-
stationary point for a given ⌘ > 0 when k↵⇤

k0 <
s, or if the specific condition k↵⇤

k0 = s holds
with ⌘ defined as

⌘⇤ =
k↵⇤

k[s]

2 |(H(↵⇤)↵⇤ � 1)|
> 0.

(c) If k↵⇤
k0 < s, the points of local minimizer,

global minimizer, and ⌘-stationary are coincid-
ing and unique.



(d) When k↵⇤
k0 = s, and ↵⇤ is an ⌘-stationary point

for some ⌘ meeting the condition

1

C
�

1

⌘

�
I +QTQ � 0,

it is then also a global minimizer. Furthermore,
this minimizer is unique if the strict inequality is
satisfied in the above condition.

Proof of Theorem 2.4: In order to prove this, we need
this lemma:
Lemma 1: A point ↵⇤ is a local minimizer if KKT
condition are fulfilled such that

8
<

:

gs⇤(z
⇤
) = 0,

h↵⇤,yi = 0,
k↵⇤

k0 = s,
or

8
<

:

g (z⇤) = 0

h↵⇤,yi = 0

k↵⇤
k0 < s

It is shown from Pan, Xiu and Fan [17], that these
conditions hold for the sparsity constrained problem
in Equation 3.
Proof: We prove that the KKT point ↵⇤ is unique if
k↵⇤

k0 < s. If there is an other KKT point ↵ 6= ↵⇤,
then the strong convexity of D(·) gives rise to:

D(↵) > D(↵⇤
) +

1

2
h↵�↵⇤,P(↵�↵⇤

)i

+ hrD(↵⇤
),↵�↵⇤

i

= D(↵⇤
) +

1

2
h↵�↵⇤,P(↵�↵⇤

)i

+ hg(z⇤)� yµ⇤,↵�↵⇤
i

= D(↵⇤
) +

1

2
h↵�↵⇤,P(↵�↵⇤

)i

� hyµ⇤,↵�↵⇤
i

= D(↵⇤
) +

1

2
h↵�↵⇤,P(↵�↵⇤

)i

> D(↵⇤
),

where when global minimizers and local minimizers
coincide, making ↵⇤ unique. This is because dual
function D(↵) in optimization is strongly convex.
This further supports the uniqueness of the KKT
point under these conditions by showing if another
KKT point existed, this would lead to a contradiction
with strong convexity of D(↵). If support of ↵⇤

= s
and a⇤ = ⌘-stationary point for some ⌘, the Jacobian
matrix will be PSD, thereby implying ↵⇤ is unique
and a global minimizer.

Based on this proof and KKT optimality conditions
for sparse nonlinear optimization [17], [2] discusses
the proof of the statements where it reaches local and
global convergence in Section 2.1.1 and 2.1.2 in his
paper.

2.5 Theoretical Local Convergence Rates
It is theoretically proven that if starting point is
chosen within local region, the NSSVM will take on
step to terminate. This is based on Zhou [2]’s The-
orem 3.1 stated below:
Theorem 3.1 (One step convergence)
Let z⇤ be an ⌘-stationary point of Equation 3 for some
0 < ⌘ < ⌘⇤, and ⌘⇤ and �⇤ be given by Appendix
4.1.3. Let

�
zk
 

be generated by NSSVM. There
should exists at least one k such that zk 2 U(z⇤, �⇤).
Therefore we have:

zk+1
= z⇤,

��� F

⇣
zk+1, Tk+1

⌘��� = 0.

Namely, NSSVM terminates at the th(k + 1) step.
This proof can be seen in Appendix 4.1.2. In sum-
mary, the proof considers a point zk which is a com-
bination of optimal point z⇤ and difference scaled
by factor t/ The distance between current point zk

and optimal point is shown to be decreasing. The
proof establishes that the derivative function evalu-
ated at two points related to optimal solution remain
the same. With the mean value theorem, the proof
shows that there is an intermediate point between the
current and optimal points that connects the functions
and its gradient. It shows that z⇤ can be expressed
by the current point, gradient and difference between
function values at current and optimal points. This
reinforces the idea that the sequence converges to an
optimal point. With Newton-type method, where the
function is convex, twice differentiable and Lipschitz
continuous, I suspect that it can either have one-step
convergence or local quadratic convergence, which is
stronger than super-linear convergence. The formal
theorem and property of this is as shown in Theorem
A below. It has also been proven by that this New-
ton method derivative [11][13] follows typical New-
ton method convergence behaviour. Therefore:
Theorem A [18]: Local Convergence Rate of New-
ton’s Method
Assume F : Rn

! Rn is continuously differentiable
and x⇤ 2 Rn is a root of F , that is, F (x⇤) = 0 such
that F 0

(x⇤) is non-singular. Then:

a) There exists � > 0 such that if kx(0)�x⇤k <
� then Newton’s method is well defined and

lim
k!1

kx(k+1)
� x⇤k

kx(k) � x⇤k
= 0.

b) If f 0 is Lipschitz continuous in a neighbour-
hood of x⇤ then there exists K > 0 such that

kx(k+1)
� x⇤k  Kkx(k) � x⇤k2.



Figure 1: Performance of the NSSVM Algorithm on Binary Classification. The left panel shows the synthetic training
data (m=400)with an accuracy of 96.00%, illustrating the decision boundary and margin. The right panel demonstrates
the model’s generalization on testing data (m=400) with a comparable accuracy of 96.50%. Both panels highlight the
algorithm’s efficacy in distinguishing between positive (circles) and negative (crosses) classes.

A) of the theorem indicates that this method has
super-linear local convergence. Moreover, from the
gradient and Hessian of this sparsity constrained ker-
nel optimization problem, indicates that the derivative
is Lipschitz continuous as given in Zhou [2]’s proof of
Theorem 2.1. This is better than linear convergence:
kx(k) � x⇤k linearly ! 0 implies kx(k+1)�x⇤k

kx(k)�x⇤k 

ckx(k) � x⇤k for some c 2 (0, 1) [18].

3 Solution and Discussion to Problem

3.1 Solution to Sparsity Constrained Kernel
Optimization Problem

The relevant parameter choices involves 4 paramet-
ers which are as listed in Table 2 below. There are
2 cases to consider as we are presenting two types of
datasets, which are synthetic data (0  m  10

4)
and real data which have m > 10

4. Here, from Fig-

Table 2: Relevant Parameters Choices for NSSVM
cases C c s0 ⌘

m  10
4 0.25 0.0025 s(0.5) 1

m
m > 10

4 0.25 0.0025 s(1) 1
m

ure 1, we applied 2 solves (NSSVM and Bayes clas-
sifier) for solving. Overall, all solvers can classify
the dataset well. While we cannot derive all combin-
ations of these 4 parameters, we use the parameters
above, such as standardised in the paper. The ob-
tained solutions ↵⇤ of problem shown in Appendix
4.4.1 has non-zero values which suggest that these
are support vectors that define the margin. The sign
of ↵⇤ (positive or negative) is associated with class

of support vector. The presence of significant num-
ber of 0 coefficients suggest that many of data points
are not support vectors and do not directly affect de-
cision boundary. The model seems to have achieved
high level of accuracy based of Figure 1. Relatively
close accuracy between training and testing suggest
there is no significant overfitting. The number of zero
coefficients could be indicative of potential misclas-
sification that a more complex model or kernel might
capture.

3.2 Convergence Plots
From Figure 2, the plot for the synthetic dataset shows
some fluctuations which indicates instability in con-
vergence. Trend does not consistently appear to be
linear, superlinear or quadratic. This could be due
to different factors such as numerical instability, or
ill-conditioning. The plot for the real dataset shows
a more smooth convergence. Towards the end, the
curve steepens which could indicate quadratic con-
vergence as the error decreases faster as it approaches
the solution. Ideally, we need to look for a more pro-
nounced bending to determine if convergence is quad-
ratic.

3.3 Relevant Checks
Based on Figure 2, it did not enjoy one-step conver-
gence argued theoretically in Section 2.5 as seen in
the increasing number of iterations required for error
to decrease. However, that could just be because the
implementation did not have a starting point in the
local area of ⌘-starting point. Theoretically, this is
possibly because the starting point and certain para-
meters did not meet the conditions justified for hav-



Figure 2: Convergence plots

ing one -step convergece. However, we expected to
have local quadratic convergence, typical of differ-
ent Newton methods which was indicative by our Q-
convergence plots as mentioned above. Global con-
vergence was not attained, as we would need a more
stable and consistent decrease towards 0. However,
we needed to have more checks regarding global con-
vergence. Step size 1 was not attained and trust region
was not active as checked. Therefore, global conver-
gence was not reached.

3.4 Performance of Subspace Newton Method
From Zhou [2]’s paper, which discusses the Newton
direction derivation here:

dkm+1 = �

D
yTk ,⇥

�1gTk

�
zk
�
� P k

Tk

E

D
yTk ,⇥

�1yk
Tk

E

dk
Tk

= �⇥
�1

h
gTk

⇣
zk
⌘
+ dkm+1yTk

i

dk
Tk

= �P k
T̄k

(9)

where ⇥ := HTk

�
P k

�
. We can see that calcula-

tions of ⇥
�1 and Ts take up most of the computa-

tional complexity. Zhou [2] concluded that overall,
NSSVM’s total complexity for each step is:

O
�
mn+min{n, s}s2

�

This total complexity can be derived from this ana-
lysis here;

1. Matrix Operations, the calculation of ⇥, based
on Hessian Matrix HTk of optimization prob-
lem, contributes to overall computational com-
plexity. Cost of computation is given by
Omax{n, s}, s2}.

2. Matrix Inversion, Once ⇥ is computed, inverting
it is necessary to process the algorithm, which
carries a complexity of O(s3)/ Cubic cost can
become significant for larger s.

3. Subset Selection: Another step in selecting a
subset Tk+1 from a larger set Ts, based on com-
putation of function g(zk+1

) and selection of k
largest elements influenced by the computation.
Complexity is O(mn) as we need to compute
the product of Q and vector, and selecting largest
elements, which is costly.

Compared to other methods in Table 3, it is known
that second order methods such as TensorSVMs[19]
and Low Rank Kernel SVMs [20] can converge
quickly within small number of iterations. The first
few methods in Table are first-order methods. Based

Table 3: Complexity of different algorithms: First 5 are
first-order methods and last 4 are second-order methods.
Zhou [2] has proven that NSSVM has the lowest computa-
tional complexity among 2nd 0rder methods

Method Complexity
Reduced SVM [21] O(mn+Nkm2

)

Sparse SVM* [7] O(mn)
Condensed SVM [22] O(m3

k +mmk)

Sparse SVM* [23] O(Nkmn + n ln(B))

Sparse SVM* [24] O(Nkm2
)

Low Rank Kernel SVMs O(mr2)
TensorSVM [19] O(m2

(n+ r))
Sparse SVM* [25] O(m3

)

NSSVM O(mn+max{n, s2})

on CPU time, memory usage and number of SVMs
used (Table 4), NSSVM algorithm shows promising
scalability in CPU time across different dataset sizes,



with only a slight increase as the size grows. Memory
usage, however, escalates notably for larger data-
sets, implying a higher demand for computational re-
sources. The number of SVMs used also increases,
potentially reflecting greater model complexity for
larger datasets. Training was implemented on a In-
tel UHD Graphics 617 1536 MB. From Table 4,

Table 4: Resource Utilization of the NSSVM Algorithm
Across Different Dataset Sizes, showing the computational
requirements in terms of CPU time and memory alongside
the count of support vectors involved.

Dataset Size CPU
time
(s)

Memory
Used
(MiB)

Number
of
SVMs
used

m=1000 (500⇥ 2) 0.040 2.543 61
m=2000 (1000⇥2) 0.048 7.695 78
m=4000 (2000⇥2) 0.041 30.47 96
m=8000 (4000⇥2) 0.337 122.4 116
RealDataset
(53602⇥ 17)

0.415 2070 1104

NSSVM’s performance exhibits scaling challenges as
the dataset size increases, with the number of SVMs
used and memory requirements rising substantially,
while CPU time grows moderately. Memory usage
jumps significantly for the larger RealDataset, indic-
ating a possible nonlinear relationship between data-
set size and memory consumption. Despite the in-
creased data points and features in the RealDataset,
the CPU time does not rise proportionately, suggest-
ing some efficiency in handling feature space. Over-
all, the method seems to have higher computational
demands for larger datasets, both in terms of memory
and processing power.

3.5 Classification Result
The classification results displayed in the confusion
matrix show high accuracy for both training and test-
ing datasets, with the model achieving over 95% ac-
curacy in most cases. For the training data with 400
samples, the model correctly identified 129 samples
as positive and 96 as negative, with few misclas-
sifications. Testing data with the same number of
samples also showed similar high accuracy, indicating
good model generalization. However, for the larger
RealDataset, there was a notable drop in performance,
suggesting potential overfitting or a need for model
re-tuning.

Figure 3: Classification Result: NSSVM Confusion Matrix
for m=400 sample size for training dataset and test dataset

Table 5: Accuracy Comparison of the NSSVM Algorithm
for Varying Sizes of Datasets, presenting the training and
testing accuracy percentages, highlighting the model’s per-
formance from smaller to larger and more complex data-
sets

Dataset Size Training
Accuracy
(%)

Test
Accuracy
(%)

m=1000 (500⇥ 2) 95.80 97.40
m=2000 (1000⇥2) 97.20 96.70
m=4000 (2000⇥2) 96.80 96.50
m=8000 (4000⇥2) 96.55 96.67
RealDataset
(53602⇥ 17)

82.50 82.74
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4 Appendix
4.1 Proof of Theorems
4.1.1 Global minimizers of Sparsity Constrained Kernel Optimization Problem
We can conclude that it admits a global solution/minimizer. The global minimizers of Equation 3 exist. Proof
The solution set is non-empty since 0 satisfies the constraints of 3. The problem can be written as:

min
|T |s,T✓Nm

⇢
min
↵2Rm

D(↵) : h↵T,yTi = 0

�
.

D(·) is strongly convex. Therefore, the inner problem is a strongly convex program which admits a unique
solution, say ↵T. In addition, the choices of T such that |T| 6 s, T ✓ Nm are finitely many. To derive the
global optimal solution, we just pick one T from those choices making D (↵T ) the smallest.

4.1.2 Proof of One-step Convergence (Zhou (2021)
Consider a point zkt = z⇤ + t

�
zk � z⇤

�
with t 2 [0, 1]. Since zk 2 U(z⇤, �⇤), it also holds zkt 2 U(z⇤, �⇤)

because of ���zkt � z⇤
��� = t

���zk � z⇤
��� 6

���zk � z⇤
��� < �⇤.

We first prove that
E

⇣
↵k

⌘
= E

⇣
↵k

t

⌘
.

In fact, if ↵⇤
= 0, then ↵k

t = t↵k, which means ↵k
t and ↵k have the same signs. This together with the

definition (1.13) of E(·) shows (3.24) immediately. If ↵⇤
6= 0, then same reasoning proving (3.14) also derives

that
↵⇤
i > 0 =) ↵k

i > 0,
�
↵k
t

�
i
= (1� t)↵⇤

i + t↵k
i > 0,

↵⇤
i < 0 =) ↵k

i < 0,
�
↵k
t

�
i
= (1� t)↵⇤

i + t↵k
i < 0,

↵⇤
i = 0 =)

�
↵k
t

�
i
= t↵k

i .

These also mean ↵k
t and ↵k have the same signs. So (3.24) is true and brings out

H

⇣
↵k

⌘
(1.12)
= E

⇣
↵k

⌘
+Q

>
Q

(3.24)
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Then for any Tk 2 Ts
�
↵k

� ⌘g
�
zk
��

, the above equation contributes to
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It follows from the mean value theorem that there exists a zkt satisfying

F

⇣
zk; Tk

⌘
(3.11)
= F
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⌘
� F (z⇤; Tk)
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which together with rF
�
zk; Tk

�
being always non-singular because of (2.18) suffices to

z⇤ = zk �
⇣
rF

⇣
zk; Tk

⌘⌘�1
F

⇣
zk; Tk

⌘

(3.1)
= zk + dk (3.3)

= zk+1.

Finally, for any Tk+1 2 Ts
�
↵k+1

� ⌘g
�
zk+1

��
= Ts (↵⇤

� ⌘g (z⇤)), it follows from z⇤ being an ⌘-
stationary point that ���F

⇣
zk+1, Tk+1

⌘��� = kF (z⇤, Tk+1)k
(2.17)
= 0.



4.1.3 Convergence Analysis
Before the main convergence property, we define some constants

� := 2max
�
1 + ⌘/c+ ⌘kQk

2, ⌘
p
m
 
,

⌘⇤ :=

⇢
k↵⇤

k[s] kg (z⇤)k�1
1 , if k↵⇤

k0 = s,

+1, if k↵⇤
k0 < s,

�⇤ :=

8
><

>:

��1
⇣
k↵⇤

k[s] � ⌘ kg (z⇤)k1

⌘
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k0 = s,

��1
mini2S⇤ |↵

⇤
i | , if 0 < k↵⇤

k0 < s,
+1, if k↵⇤

k0 = 0.

Based on which, we first present some properties regarding an ⌘-stationary point of (1.4). Lemma 3.1 Let
z⇤ be an ⌘-stationary point of (1.4) for some 0 < ⌘ < ⌘⇤, and ⌘⇤ and �⇤ be given by (3.8) and (3.9). Then
for any z 2 U (z⇤, �⇤), we have the following results. a) The parameters ⌘⇤ > 0 and �⇤ > 0. b) For any
T 2 Ts(↵� ⌘g(z)) and any T⇤ 2 Ts (↵⇤

� ⌘g (z⇤)), it holds
⇢

S⇤ = T⇤ = T = supp(↵), if k↵⇤
k0 = s,

S⇤ ✓ (T⇤ \ T \ supp(↵)) , if k↵⇤
k0 < s.

c) For any T 2 Ts(↵� ⌘g(z)), it holds
F (z⇤; T) = 0.

4.2 Datasets
We consider two datasets, one synthetic data and real data in higher dimensions. When comparing the perform-
ance of the method, let ↵ be the classifier generated by the method. We consider two-dimensional examples
with the generated synthetic data. The randomData function generates these datasets. In the 2D case:

• Generates a vertically stacked array of two Gaussian distributions with m
2 samples each.

• For positive class (c=1), the datapoints are drawn from a Gaussian distribution centered at (0.5,-3) with
variance (0.5,3).

• For negative class (c=-1), the data points are drawn from a Gaussian distribution centered at (-0.5,3) with
variance (0.5,3).

• The result is 2 clusters with class labels {1,�1}, located diagonally across from each other on the
Cartesian plane.

The 3D case as follows:

• Generates two classes of 3D data with m
2 samples each.

• The positive class is generated in cylindrical coordinates (⇢, ✓, z) with rho centered around 0.5 and per-
turbed by a small Gaussian noise with standard deviation 0.03, and ✓ uniformly distributed between 0 and
2⇡. The z coordinate is the square of ⇢.

• The negative class is generated similarly but with z as the negative square of ⇢. This creates a 3D distri-
bution where one class is above the plane and the other is mirrored below, both centered around a cylinder
axis.

It is good to note that the real dataset is described and detailed by Zhou [2]. It has 17 dimensions, and consists
of a manually curated coagulation of different datasets that are inseparable.

4.3 Code
Alternatively, full repository, dataset and code can be found here. https://github.com/anabelyong/
NSSVM-python.

https://github.com/anabelyong/NSSVM-python
https://github.com/anabelyong/NSSVM-python


4.3.1 NSSVM Implementation









4.3.2 How to run and visualise NSSVM Binary Classification and Results

Figure 4: Jupyter Notebook Results Logging Part 1



Figure 5: Jupyter Notebook Results Logging Part 2



4.4 Supplementary Materials
4.4.1 ↵⇤ values obtained for Synthetic Dataset with size m=400

Figure 6: ↵⇤ Obtained Solution which looks sparse

4.4.2 Supplementary Figures



Figure 7: Performance of NSSVM algorithm on Binary Classification with m=100 Synthetic Dataset generated

Figure 8: Performance of NSSVM algorithm on Binary Classification with m=200 Synthetic Dataset generated

Figure 9: Performance of NSSVM algorithm on Binary Classification with m=1000 Synthetic Dataset generated



Figure 10: Performance of NSSVM algorithm on Binary Classification with m=2000 Synthetic Dataset generated

Figure 11: Performance of NSSVM algorithm on Binary Classification with m=400 Synthetic Dataset generated

Figure 12: Performance of NSSVM algorithm on Binary Classification with m=8000 Synthetic Dataset generated


