
Probabilistic Circuits

Anabel Yong

10th December 2025

Probabilistic Circuits (PCs) are a family of tractable generative models that
unify ideas from graphical models, deep learning, and arithmetic circuits. They
provide exact, efficient probabilistic inference while remaining expressive enough
to model complex, high-dimensional data. PCs achieve this by imposing struc-
tural constraints on computation graphs made of sum, product, and distribution
(leaf) nodes.

1 Tractable vs. Intractable Models
The main difference between different probabilistic models like (Fully factorized,
NaiveBayes, AndOrGraphs, PDGs, Thin Junction Trees, ACs, DPPs, Mixtures)
and (NADES, MADES, MAFs, VAEs, FVSBNs, TACs, IAFs, NAFs, RAEs,
BNs, NICE< FGs, GANs, RealNVP, MNs) are whether they are tractable
for answering certain queries. Tractability is a spectrum and it depends on
the queries you want to ask. Ensuring a model is tractable will be asking for
expressive models without compromise; this means if you want your model to
be tractable, you are making a compromise on its expressivity. The goal of the
tutorial is to provide a unifying framework for tractable probabilistic models.

2 Why Tractable Inference? (expressiveness vs
tractability)

We want to fit a generative model, a model which encodes a joint probability
distribution, We want to fit a generative model to answer probabilistic queries.

Q_1 = What is the probability that today is a Monday and there is a traffic jam on Westwood Blvd?

X = {day,time, JamStreet1, JamStreet2, . . . , JamStreetN}

q1(m) = pm(Day = Mon, , JamWestwood = 1)

We want to marginalize out the rest of the variables. We can formalize probabil-
istic queries as computing some quantity over the probability distribution which
is encoded in our generative model.
Tractable Probabilistic Inference: A class of queries Q is tractable on a

1

family of probabilistic models M if and only if for any query q ∈ Q and model
m ∈ M exactly computing q(m) runs in time O(poly(|m|)). We have a family of
probabilistic models. Each model m ∈ M is like a particular Bayesian network,
factor graph, etc. We have a class of queries Q. A query q ∈ Q might be things
like computing a marginal probability, MAP, partition function, etc. The class
of queries is tractable for this model family if for any model m in the family and
any query q, the answer q(m) can be computed exactly in time polynomial in
|m|. Here |m| is the size of the model (number of parameters, factors, etc.). We
also need to note that often the polynomial time is actually linear in the size of
the model. If the model size |m| itself only grows polynomially with the number
of variables X, then query time is also polynomial in the number of variables.

Q_1 = What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Westwood Blvd?

X = {day,time, JamStreet1, JamStreet2, . . . , JamStreetN}
q3(m) = pm(X = Mon, 12.00, JamWestwood = 1)

q3 is a complete-evidence query which means "What is the probability of this exact
full assignment of all variables?" In maximum likelihood estimation, training
data contains many such full assignments x. To fit parameters θ, you maximize
the probability of all observed data. θMLE

m = argmaxθ = Πx∈Dp+m(x; θ). So
computing pm(x) for complete evidence like in the query is exactly the operation
needed for MLE. Which kind of probabilistic model are we allowed to use to
answer complete evidence queries? We use Generative Adversarial Networks.

2.1 Generative Adversarial Networks
We cannot use GANs to answer complete evidence queries because:

1. no explicit likelihood; adversarial training instead of MLE, no tractable
EVI.

2. good sample quality but lots of samples needed for MC

3. unstable training (mode collapse)

A complete-evidence query asks for p(X = x) which is the probability(density) of
a specific full datapoint. This requires a model that explicitly defines a likelihood
function pθ(x). GANs specify only a generator function x = Gθ(z) and a
discriminator Dϕ(x), but these are just functions, not probability distributions.
A GAN never defines a formula for pθ(x). GAN training is adversarial, not
likelihood-based. GANs optimize:

min
θ

max
ϕ

Ex∼pdata logDϕ(x) + Ez∼p(z) log(1−Dϕ(Gθ(z))

No term involves pθ(x). The generator is only trained to produce samples that
fool the discriminator, not to represent a probability model. GANs have no
tractable explicit probability distribution to query. GANs can produce data
points x via simulation but they cannot tell how likely that data point is, how
its likelihood compares to others, or the probability of a specific configuration.

2

2.2 Variational Autoencoders
While VAEs do define an explicit likelihood model:

pθ(x) =

∫
pθ(x|z)p(z)dz

In principle, the VAE does assign a probability to any full datapoint x but the
integral is the problem. Computing pθ requires solving an intractable integral.
The expression is over a continuous latent space z, which is high-dimensional
and forming an uncountable mixture of infinitely many components. Therefore,
VAEs must optimize the ELBO instead. You maximize a lower bound instead of
the true log-likelihood:

log pθ(x) ≥ Ez∼qϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)||p(z))

2.3 Normalizing Flows
Normalizing flows are the only one that can compute exact likelihoods, and there-
fore they can answer complete evidence queries(EVI). A normalizing flow defines
a bijective invertible transformation between latent variable z ∼ pZ(z)(simple
distribution like a Gaussian), and observed variable x = f(x). Because f is
invertible, we can solve for z = f−1(x). Then, the change-of-variables formula
gives an exact density:

pX(x) = pZ(f
−1(x)) det

δf−1

δx

This is fully tractable because f−1 is computable. The Jacobian determinant is
designed to be cheap to compute and pZ(z) is known exactly. Evaluating the
probability of a particular data point x is easy. They can be used to answer
complete-evidence queries because they provide an explicit, tractable formula
for the exact likelihood p(x).

3 Marginal Queries
Q_1 = What is the probability that today is a Monday and there is a traffic jam on Westwood Blvd?

A marginal query asks pm(E = e) where E is a subset of the variables and
nothing is said about the others. Here, we are not fixing all the variables. You
leave the rest (call them H) unknown or hidden. To compute the marginal, you
must sum or integrate over all possible values of the remaining variables.

pm(e) =

∫
pm(e,H)dH

where E ⊂ X are the variables you observe. and H = X/E are the hidden ones
you must sum/integrate out. So a marginal probability involves an expensive
summation or integral over many configurations.

3

4 Probabilistic Graphical Models
PGMs separate the modeling assumptions from the inference algorithms. This
means, the graph formalism structure tells you how variables depend on each
other(this is the model - the assumptions about the world). Inference al-
gorithms compute probabilities using that structure (this is reasoning - what
questions we ask the model). For example, the graph in the slide shows variables
{X1, X2, X3, X4, X5} with edges connecting them. Nodes are random variables
and edges are dependencies (who influences whom or who shares information).
This indicates declarative semantics, nothing about learning or inference is
baked into the graph. It only expresses how the world works at a structural
level. Once the graph is defined, you can ask questions like:

1. p(X1 = x1|X3 = x3)

2. p(X2, X4)

3. maxx5
p(x5|evidence)

To answer the above, PGMs give several general purpose inference methods.
Conditioning (which is setting some variables to fixed values, reduce the model
and compute the rest). Variable elimination (systematically sum/integrate out
irrelevant variables while using the graph’s structure to remain efficient). Message
passing (belief propagation) - nodes send probability messages to neighbours,
used in trees, HMMs, etc. These algorithms exploit conditional independencies
encoded in the graph to avoid brute-force computation. This is different from
neural models where inference is tied to the actual architecture of the model.

4.1 Complexity of Marginal Queries on PGMs
Computing marginal and complete queries is #P-hard. This means to compute
a marginal probability p(X = x) or P (E = e), you must sum over exponentially
many hidden-variable assignments. This summation is as hard as counting
the number of satisfying assignmnets to a CNF formula - a classic #P-hard
problem. Exact marginal inference is computationally intractable for general
PGMs. Additionally, approximating MAR and CON within a factor of 2n

1−ϵ

is NP-hard. This means exact computation is intractable and approximate
computation with any reasonable error guarantee is also intractable. A marginal
query p(e) =

∑
H p(e,H) requires summing over all possible combinations of the

hidden variables H. If there are n hidden variables, there are 2n assignments.

4.2 Why is it intractable? Treewidth.
Treewidth is how close the graphical model is to being a tree. If the graph were
a tree, then inference is easy in linear time. If the graph has lots of loop and
dense connections, inference is hard. Formally, treewidth is the minimum size of
the largest "cluster"(minus 1) required to turn the graph into a tree structure
(a tree decomposition). For a fixed treewidth w, inference scales linearly with

4

the number of variables O(|X| × 2w). So if you can design a model so that w is
small, MAR and CON become tractable. What about bounding the treewith by
design? This hints at model classes that intentionally restrict the structure so
that inference is always efficient(e.g. arithmetic circuits).

4.3 Tree-structured Bayesian Network
A tree-structured BN is a graphical model where each variable Xi has at most
one parent. The entire structure forms a tree - no loops, no nodes with multiple
parents. If our model is a tree, the joint distribution factorizes as:

p(X) = Πn
i=1p(xi|Paxi

)

This factorization is exact and extremely efficient. We have three kinds of
probabilistic queries, EVI(complete evidence queries), MAR(marginal queries),
and CON(conditional queries). For general graphical models, these are #P-hard
or NP-hard. But for trees, all these queries can be computed in linear time
O(|X|). This time required grows only proportionally to the number of variables.
As trees have treedwidth of 1, complexity of inference is O(|X| × 2w). Therefore,
O(|X| × 2) = O(|X|). But, we lose expressiveness - ability to represent rich
and complex classes of distributions. Is there a way to solve this? Yes, using
mixtures as a convex combination of k simpler probabilistic models.

4.4 Mixture Models
A mixture model takes several simple models and blends them teogether.

p(X) = w1p1(X) + w2p2(X) + · · ·+ wkpk(X)

where each pi(X) is a simple model like a tree distribution. wi ≥ 0 and the
summation of wi sums to 1. This is a convex combination of simpler distributions.
EVI, MAR, CON queries scale linearly in k. This is because evaluating mixtures
is just evaluating each component and summing EVI (p(x) =

∑
i wipi(x)), MAR

(p(e) =
∑

i wipi(e)) and CON also decomposes across components. So the cost
increases by a factor of k(number of components). Inference stays tractable
because queries reduce to weighted sum over components.
A mixture model means marginalizing a categorical latent variable.

p(X) = p(Z = 1)p1(X|Z = 1) + p(Z = 2)p2(X|Z = 2)

This indicates a mixture is just a probabilistic model with a discrete latent
vairable Z. Z chooses which component model generates the data. If Z = 1, use
the distribution p1(X), if Z = 2, use the distribution p2(X). The final separation
is obtained by marginalizing out Z:

p(X) =

k∑
z=1

p(Z = z)p(X|Z = z)

5

5 Maximum A Posteriori(MAP)
Find parameters θ that are the most probable after observing data and considering
prior beliefs.

θMAP = argmax
θ

p(θ|D)

MAP asks:
arg max

j1,j2,...
pm(j1, j2, . . . |Day = Mon, Time = 9)

Here the evidence is that the day is Monday, and time is 9 pm. Unknown query
variables Q are the jam indicators for each road. So in MAP, this means among
all possible combinations of jams, which one is most probable given the evidence?
Given a trained model, picks the mosts likely configuration of variables under
the evidence. No parameter learning happens in MAP inference.

6 Probabilistic Circuits
A probabilistic circuit is a computational graph(like a neural network), where
each node computes part of a probability distribution. Leaves represent simple
distributions (univariate probabilities), and internal nodes combine them using
sum and product operations. The entire circuit computes a (possibly unnormal-
ized) probability p(X). Operational semantics = the exact rules for computing
probabilities by running a circuit. This means at sum nodes, we compute a
mixture p = w1p1+w2p2+ . . . wkpk. At product nodes, you compute a factorized
joint p = p(A) · p(B). Everything in the circuit can be computed exactly by
evaluating the graph bottom-up.

6.1 Distributions as computational graphs
The simplest base case is a leaf node which represents a univariate Gaussian
distribution. A simple probability distribution, can be treated as a black-box
computational node in a probabilistic circuit. You feed in a value x, the node
outputs the probability pX(x). For example, we know a Gaussian node with
mean µ, and variance σ2 computes:

pX(x) =
1√
2πσ2

exp(− (x− µ)2

2σ2
)

This is a tractable computation. Gaussians are perfect circuit building blocks.
For a Gaussian, and computing Complete Evidence Inference (EVI), this is just
evaluating the Gaussian PDF which is pX(x) = N (x|µ, σ2). This is fast in O(1)
time. For marginal inference (MAR), the marginal of X is 1 (normalized) where∫
p(x)dx = 1. If its unnormalized, the MAR operation outputs the partition

function Z - the integral of an unnormalized distribution. For MAP, the mode is
simply its mean argmaxx pX(x) = µ. Gaussians are tractable for all common
inference tasks. Therefore, when we build PCs from simple nodes like Gaussians,
all the higher-level inference operations remain tractable.

6

6.2 Factorizations
There are a few components which make models tractable and expressive. We
do not want to work with simple distributions as they are not expressive. Fac-
torization is a method, this means if you have a joint distribution over 3 random
variables p(X1, X2, X3) = p(X1) × p(X2) × p(X3). I can assume that it is fac-
torized, meaning that it is the probability of the individual random variables
multiplied. Factorizations are product nodes, in our case here, it is a product
node over some univariate Gaussian distribution. We know that mixture models
enhance richness and expressivity of the model. Modelling a mixture of Gaussians
p(X) = w1p1(X) + w2p2(X). We can write mixtures as sum nodes which has
weights, as a weighted sum node over Gaussian input distributions.

6.3 Which structural constraints ensure tractability?
Decomposability is a property of factorized distributions. We make product
nodes behave like valid probability distributions. Ensures that inference is
efficient (no variable interactions, no exponential summations, avoids double-
counting variables).
Smoothness requires that all children of a sum node must have the same scope
(they must depend on the same set of variables). A sum node in a probabilistic
circuit represents a mixture of distributions. To satisfy smoothness, if one child
models (age, income) or someone, the other must also model age and income of
someone. We use both decomposability and smoothness to compute a marginal
(MAR). We want to compute: ∫

p(x)dx

p(e) =

∫
p(e, h)dh

This requires integrating out hidden variables. Integration is normally #P-hard
in graphical models. If thee model is smooth:

p(x) =
∑
i

wipi(x)

Then the scope of all pi is the same, so the integral behaves nicely:∫
p(x)dx =

∫ ∑
i

wipi(x)dx

We can swap the integral and the sum:∑
i

wi

∫
pi(x)dx

Decomposability means:
pi(x) = Πjpij(xij)

7

and all variable subsets are disjoint. So:∫
pi(x)dx =

∫
Πjpij(xij)dx

This becomes:
Πj

∫
pij(xij)dxij

Product of all the integration of all the probabilities for the product nodes.
Recursively simplify these leaf nodes, get my answer and multiply. Compute
with dynamic programming. Now to compute marginal probabilities (MAR):
We want to compute p(q|e). This is always computed using the definition of
conditional probability:

p(q|e) = p(q, e)

p(e)

We compute two marginals, where p(q, e) is the joint probability of query and
evidence and p(e) is the marginal over evidence only.

6.4 PCs on MAP inference
Finding either the probability of most likely state of all the random variables
given some observations.

max
q

p(q|e)

Using Bayes rule, this is proportional to maxq p(q, e). We want to propagate a
max instead of a sum or integral. The key problem is max does not distribute
over sum. At a sum node, the model:

p(q, e) =
∑
i

wipi(q, e)

MAP would require maxq
∑

i wipi(q, e). But max does not commute with sum:

max
q

∑
i

wipi(q, e) ̸=
∑
i

wi max
q

pi(q, e)

MAP for latent variable models is intractable, but there is another property we
can assume which is determinism.

6.5 Determinism aka selectivity
Determinism makes MAP inference tractable. A sum node is deterministic if
for any complete assignment of all variables, at most one child of the sum node
has a non-zero output. Equivalently, children of a deterministic sum node have
disjoint support. This turns mixture behaviour into decision behaviour, each
input activates exactly one branch. This is why determinsitic PCs allow bottom
up MAP inference.

max
x

p(x) = max
x

max
i

[wipi(x)]

8

As only one child is active at a time, max and sum no longer compete, the MAP
flow can propagate locally. PCs allow bottom-up MAP inference.

max
q

p(q, e) =
∑
i

wipi(q, e)

max
q

p(q, e) = max
q

max
i

wipi(q, e)

max
q

p(q, e) = max
i

max
q

wipi(q, e)

Sum Product Networks are not deterministic, not exact MAP inference.

7 Learning Probabilistic Circuits

7.1 Exponential-family distributions matter in PCs
Since a PC is a computational graph with sum nodes, product nodes and leaf
distributions. The leaves of the circuit are simple probability distributions. These
leaves must be easy to evaluate, marginalize, differentiate and are parameter-
efficient. Each leaf node represents a probability distribution over one variable.
To learn a PC from data, we must fit the parameters of these leaves. EFs have
analytical maximum-likelihood solutions. This indicates closed-form marginaliz-
ation for

∫
p(x)dx. EFs distributions have closed or easily computable integrals.

How to learn the leaf distributions in a probabilistic circuit: using
maximum likelihood estimation (MLE) for exponential-family distributions. PCs
rely heavily on exponential-family leaves because they allow easy, closed-form
learning. Every exponential-family distribution can be written as:

pL(x) = h(x) exp(T (x)⊤θ −A(θ))

where T (x) are sufficient statistics(x, x2, ..), θ are natural parameters (log-odds),
A(θ) is the log-partition function(normalizer) and h(x) is the base measure. For
exponential families, maximizing the likelihood over data D yields a simple rule:

ϕML = ED[T (x)] =
1

|D|
∑
x∈D

T (x)

Compute the average sufficient statistics over data. So we know that, a sum
node in a PC computes:

p(X) =i wipi(X)

We introduce a latent categorical variable Z ∈ {1, 2, . . . , k}, the circuit represents:

p(X) =
∑
z

p(Z = z)p(X|Z = z)

Thus, each child pi(X) is a component, and each weight wi = p(Z = i) is the
mixing probability.

9

7.2 Expectation Maximization: maximum likelihood under
missing data

E-step: Estimate the expected latent assignments (soft cluster). M-step: Max-
imize parameters (weights + leaf parameters) given these assignments. Given
data X and hidden cluster assignments Z, EM maximizes the likelihood of:

p(X,Z; θ)

We do not observe Z, so we replace it with its expectation under the current
parameters:

θnew = argmax
θ

Ep(Z|X;θold)[log p(X,Z; θ)]

E-step: Compute responsibilities (posterior over the latent variable). For each
data point x and each mixture component i:

γi(x) = p(Z = i|X = x) =
wipi(x)∑
j wjpj(x)

These γi(x) are soft assignments - how much each subcircuit is responsible for
generating the data point. M-step: update the mixture weights:

wnew
i =

1

N

∑
x∈D

γi(x)

Which counts how often each component is used, and normalizes to get valid
probabilities. Weighted MLE for exponential family leaves, we compute weighted
sufficient statistics. For example, a Gaussian leaf:

µnew =

∑
x γi(x)x∑
x γi(x)

σ2new =

∑
x γi(x)(x− µ)2∑

x γi(x)

10

	Tractable vs. Intractable Models
	Why Tractable Inference? (expressiveness vs tractability)
	Generative Adversarial Networks
	Variational Autoencoders
	Normalizing Flows

	Marginal Queries
	Probabilistic Graphical Models
	Complexity of Marginal Queries on PGMs
	Why is it intractable? Treewidth.
	Tree-structured Bayesian Network
	Mixture Models

	Maximum A Posteriori(MAP)
	Probabilistic Circuits
	Distributions as computational graphs
	Factorizations
	Which structural constraints ensure tractability?
	PCs on MAP inference
	Determinism aka selectivity

	Learning Probabilistic Circuits
	Exponential-family distributions matter in PCs
	Expectation Maximization: maximum likelihood under missing data

