Probabilistic & Unsupervised Learning Summative Assignment

Gatsby Computational Neuroscience Unit - Peter Orbanz

Student ID: 23205123

MSc Computational Statistics & Machine Learning

Department of Computer Science
University College London
London
15 November 2023

Contents

Problem 1: Models for binary vectors
a) Inappropriate model: Multivariate Gaussians oo .
b) ML estimator for pg o .
c) MAP estimator for pgo
d) ML parameters of Multivariate Bernoulli
e) MAP parameters: a =0 =3

Problem 2: Model Selection

Problem 3: EM for Binary Data
a) Likelihood of mixture of K multivariate Bernoulli distributions
D) Ruk -« v o o e e e
c) Maxmuzmg Parameters of prg & T . -o
d) Log Likelihood for different K
e) Responsibilities, Cluster Means & Probability Vector Images
f) GZip & Naive Encoding
g) Total Encoding Cost

Problem 4: LGSSMs, EM and SSID
a) Kalman Filter & Kalman Smoother 0
b) EM on ssm_ spin.txt training datao oo o
Update for Rnew: e
Update for Quew:
c) EM on ssm_spins_test.txt test data L

Problem 5: Decrypting Messages with MCMC
a) ML Estimates Formulae & Probability Estimates
b) Joint Probability given o L
¢) Acceptance Probability in MH algorithm oo
d) MH algorithm e
e) Ergodicity
Irreducibility Proof
Aperiodicity Proof
f) Different Approaches to decoding L
Symbol Probabilities alone:
2nd Order Markov Chain:
Encryption Scheme with Non-unique Mappings:
Chinese Language: e

Problem 6: Implementing Gibbs Sampling for LDA
a) ToyExample.data e
b) Autocorrelation L
c) Gibbs Sampler Convergence i i
d) Varying parameters e
Varying «o
Varying 8 o e e
Varying K/Number of Topics oo i

=W W W

(=233}

[IENSEEN RN |

Problem 7: Optimization
a) Lagrange Multiplier Method & Local Extrema
b) Newton-Raphson Method

Problem 8: Eigenvalues as solutions of optimization problems

a) sup Ra(x) .
TER™
b) Ra(z) < X\

c) Ra(z) <)\

Appendix

Images & Graphs e

1) Learned
2) Running
Code Execution
Question 1:
Question 2:
Question 3:
Question 4:
Question 5:
Question 6:

Probability Vector Images at each run for each component k={2,3,4,7,10}
toyexample.data with larger number of iterations n_iter =2000.

38
38
40

40
40

41
42

Problem 1: Models for binary vectors

a) Inappropriate model: Multivariate Gaussians

The multivariate Gaussian (also known as multivariate normal) distribution is used to model continuous
data that can take any value in a continuous range. However, our binary images have pixels that can only
take on the values 0 or 1. Therefore:

e Value Constraints: In the binary image, pixel values are either 0 (black) or 1 (white). In contrast, a
multivariate Gaussian can produce any real-valued number as an output, which doesn’t fit with the
binary nature of our data.

e No Physical Interpretation: Any value other than 0 or 1 has no physical interpretation in the context
of binary images. For example, what would a pixel value of 0.57 mean for a black and white image?

e Invalid Assumptions: The multivariate Gaussian assumes that the data follows a bell-shaped curve
(normal distribution). This assumption doesn’t hold for binary data which is bimodal (having two
peaks).

b) ML estimator for py

Images modelled as i.i.d. samples from a D-dimensional multivariate Bernoulli distribution with parameter
p=(p1, ..., Pp), which has form:

P(zlp) = T2 p5* (1 — pa)1 — zq) (1)

For the given data, the likelihood is given by the product of probabilities for each individual image for the
vector space p.

L(play,) = I TG pg? (1= pa) 1 —) (2)
Log likelihood function then becomes;
In(L(p)) = Ti_1 B [egin(pa) + (1 — af)ln(1 — pa))] 3)

Differentiating the log likelihood with respect to pg, For z7jin(pg):

0 1
—axln =gl —
5pa d (Pa) dpd

For (1 —z2)In(1 — pa):

D0 a1~ pa) = (1 2

0pa 1 —pq
Substituting these into our log-likelihood expression:
6In(L(p)) _ ¢~ 1
——2 =5l — — (1 -z}
o e
1
SN [t — — (1 — 2" =
Now, we’ll solve for pg:
E,]y, rh— = Eﬁf, 1—ah
] (=)

Multiplying through by pg(1 — pa):
SN 21— pa) = Z0_1pa(l —)

Expanding this equation:
Sho1@y — paSa g = paN — pa¥p_ix]

1
Pa = Nanzle

c) MAP estimator for p,

Maximum A Posteriori (MAP) estimate for pg given the data. Likelihood is given by the Bernoulli distribu-
tion for the binary data:
P(D§) = I T07 g (1 — pa) ' =4

Prior is given by:

1
P(0) =105, mpj‘l(l —pa)’ Tt

In order to the MAP estimate(from lecture slides):
Orrap = argmaxP(0|D)

Orap = argmazP(0)P(D|6)

Taking the logarithm:
InP(0|D) = InP(D|6) + InP(6)

Differentiating with respect to pg4, and setting it to zero to give us maximum. For inP(D|0):

5 n n
3N e n(pa) + (1 - 25 In(1 - pa))]
0pa

For InP(6):

(S%d[(a — Dinpa + (8 = 1)in(1 — pa)]

Adding these together and setting to zero:
Z,Iyzlzg")ln(pd) + (1 - x&")ln(l —paq)) + (a@—1)inpg+ (B8 —1)in(1 —pg) =0

SN o +a—1=pgN+a+ -2
Therefore, the MAP estimate for py is:

pMAP _ a—1+%N 2l
d N+a+p-2

d) ML parameters of Multivariate Bernoulli

ML Estimates as 8x8 Image

0.64 077 0.69

- 0.7
0.e4 072 070 0.79

- 0.6

Probability

0.60 0.59

.D.ﬁﬁ 0.76 0.77

Figure 1: MAP Estimates as 8 x 8 image

e) MAP parameters: a =3 =3

MAP Estimates as 8x8 Image

0.63 0.76 0.68

0.63 0.71 0.69 0.78

o o
w S
Probability

o
[N}

0.60 0.59

0.1
0.65 0.75 0.76

Figure 2: MAP Estimates as 8 x 8 image with a = =3

MAP estimate performs better than the ML estimate. The ML estimate may not perform well with sparse
data for certain pixels. If a pixel is rarely ’on’(almost always 0), ML could suggest a very low probability,
effectively ignoring the rare occurrences where pixel is ’1’. This might lead to underestimating the true
likelihood of such events. MAP, with a prior that is not too strong, can potentially solve this issue by
smoothing the probabilities and ensuring that even rare events are assigned a non-zero likelihood, which
might reflect their true probabilities more accurately.

Other advantages of MAP estimate over ML estimate:

e Preventing Zero Probabilities: = With MLE, this could lead to issues in computational mod-
els where calculations depend on probabilities such as log-likelihood computations. MAP estimation
ensures that each event has a non-zero probability which can lead to more stable computation.

e Choice of o & [: This essentially denotes the prior belief. With @ = 8 = 3, this indicates each pixel
has equal chance of being ’0’ and ’1’ before seeing the data. The prior is not biased to either outcome

but it is not completely non-informative.

e Adaptability to different scenarios: MAP estimate allows, depending on the situation, adjustment
to a and (. If there is reason that pixels are more likely to be 'on’, you can choose a > (.

Problem 2: Model Selection

a) Ml

Given this model 1, the probability of a single pixel being either 0 or 1 is pg = 0.5. For a single image x(n)
with D pixels:

e The probability of the first pixel being either 0 or 1 is 0.5
e The probability of the second pixel being either 0 or 1 is 0.5
Therefore, the probability of observing any particular binary image (™) of D pixels under this model is:

P(z™|My) = P(x1|My) x P(x2]My) x -+ x P(xp|My)

for D pixels

Using our single pixel probability:
P(z™|M;) = (0.5) x (0.5) x --- x (0.5)
Pz |My) = (0.57)N
Using base conversion, and logarithmic properties:
(0.5P)N = (2~ 1)DxN
9—DxN _ 9=ND

P(D|M,) =2"NP

b) M,

Given this model 2, all D components are generated from Bernoulli distributions with unknown but identical
pa. Let us denote X, where (™ is a D-dimensional binary vector:

X = {x(1)7x(2),...,x(”)}

and P(D|Ma3) as the likelihood of data D given the model My. P(z|p) which has a D-dimensional multi-
variate Bernoulli distribution with parameter vector p = (p1,...,pp) as:

P(x|p) = S pit (1 — pa)

Therefore, for all parameters vectors p:

- e
P(Jj(") Ipa) :pddfvd (1 _pd)D DIFE

P(Dlpa) = 152, P(«™pa)

To find the overall likelihood of data under model Ms, without knowing the specific py, we integrate over
all possible values of pg which range from 0 < pg < 1, due to the uniform prior.

1
HmMﬁZWﬂN/PWWMWWMm
0

1 N (n) (n)
P(D|M2):/ pdznzlzddxd (lipd)Nszﬁ’:lzd,dmd 21dpg
0

1 (n) (n)]
:/0 (Pfdwd (1 — pg)NP~2a7a >>< 1dpg

Rewriting as a Beta function where the beta function is:

1
B(zhzg):/ 171 —t)*=dt
0

1
B(EN_SaY +1,ND - 2N 220 +1) = / P (1 —pa)=ldt
0
P(D|My) = B(EN_ 542" +1,ND — £ 53,2 4+ 1)

1
[
0

C) Mg

Given M3 where each component is Bernoulli distributed with separate, unknown pg, and given a single
pixel d, likelihood contribution from all images for that pixel n:

2 O]
P(Dalpa) = TI)_1py* (1 —pg)'~"a

Marginalizing py out, we integrate over its possible range [0,1] with respect to the uniform prior.

1
P(Dy) = /0 P(Dalpa)dpa

1) (n)
=/ <Hﬁ_1p§d (1 —pg)t—"a)dpd
0

Thus, as pixels are independent, evidence for entire dataset is product of evidence for each pixel:

P(D|Ms3) =117, P(Dq)

n)

z (™
P(D|M3) = T 1py* (1 —pa)' e

Rewriting this as a Beta function:
P(DIMs) =TI, B (S0,al” + 1,500, (1 = 2f”) + 1))

In order to calculate the posterior probabilities of each of the 3 models, we have Bayes theorem:

DIM) - P(M)
P(D)

pmp) = 2L

Since we assumed that all models are equally likely a priori:
P(My) = P(Mz) = P(M3)

With the likelihoods provided above, and the evidence P(D) which is the probability of data under any
model, which is a sum of likelihoods of the data under all models, considering priors:

P(D) = P(D|My) - P(My) + P(D|Mz) - P(M3) + P(D|Ms) - P(M3)

Posterior Probabilities of Model 1,2,3

As priors are equal, P(D) becomes sum of the likelihoods of the 3 models:
P(D) = P(D|My) + P(D|M3) + P(D|Ms)
To compute posterior probabilities for each model, in log form:
logP(M;|D) = log (P(D|M;)) — log (P(D|My) + P(D|Mz) + P(D|Ms))
Converting these log probabilities back to posterior probabilities:

P(M;|D) = elos(P(DIM)~log(P(DIAM:)+P(DIM2)+P (D] Ms))

Therefore:

Table 1: Posterior Probabilities of M1, Ma, M3

M, | Natural Log Likelihood | P(M;|D)
My -4436 9.143e — 255
M, -4283 1.434e — 188
M -3851 1.0

Problem 3: EM for Binary Data

a) Likelihood of mixture of K multivariate Bernoulli distributions

Probability of observing z(™ under a single Bernoulli component k is:

2 _gm
P(a™|k) = 2 pra (1= ppa)' == (4)

(n) h
d

e where x,," value of d*" pixel in n*" image.

® piq is probability that d” pixel takes value 1 under k" Bernoulli component.

Overall likelihood of observing (™) under the mixture model is weighted sum of likelihoods from each
component:
P(z™|r, P) = S5 . P(z™ k),
) »
P(a®|m, P) = SIS mIpiy (1= pea)' =)
Likelihood of entire dataset {z(), 2 .. (™}, under the assumption that images are i.i.d:
L(r, P) =1IN_, P(z™|r, P)

(n) ()
L(m, P) = HnN:1ZkK:17TkHdD:1Pz?1 (1= pra)t "

b) Rk

For mixture models with latent variables, let R,; be the posterior probability of latent variable (), being
in state k. Given observation x:
Ry = P(s"™) = k2™ 7, P)
P(z™|s") =k, P)P(s™) = k|n)
P(x™|r, P)

Rnk =

From Equation 5:

" 2 N CO!
P(z™|r, P) = Egl‘(:lﬂjﬂdDzlpjj (1= pja)t~"d

and: .
n ™
P(a™ k) =TI pyd (1 — pra)' ™

Therefore: .
D x n 1— (n)
Tl Dy (1 — pra)' "
)
K 1D ,%a S \1—g(W
i millgpig (1 —pja) "

Rnk, =

c) Maximizing Parameters of py; & 7y

Complete data log likelihood is the log joint log P(S(™ = k|z(™, x, P). Expected log joint with respect to
R, which is found in the E-step is:

Q(m, P) = S35 Rurlog P(a™, s = K|m, P) (6)
From the Equation 6, logP(z(™),s(") = k|x, P):
logP(z™, 8™ = k|r, P) = logP(z™|s™ =k, P) + logP(s"™) = k|n)
Substituting Equation 4 into Equation 7:

logP(z™, 8™ = k|r, P) = logP(z™|s™) = k, P) 4 logP(s'™) = k|n) (7)

n)

(¢ _m
= log <HdD_1pi§ (1- pkd)l Ta) + logmy,

(n)

= ZdD:ﬂ?d logpra + (1 — xgn))

log(1 — pra) + logmy,
Thus:
Q(r, P) = S S Rk (S22 10gpra + (1 = &§”)log(1 = pra) + logm)

Setting up derivative with respect to pi4:

Q. P) _ " (_(1 - w&’”))

1 — pra

OPkda DPkd

0Q(m, P) N xfi”) 1- x{(ln)
T o wN R [2 - T
Pk Pkd 1 — Dra

Setting derivative above to 0:

QM P) v g P 1—af)
n=14tnk | — -
0Pk Pkd 1 — Dra
n) (n)
SN R 2" (1= pra) — pra(1 —2{") _ 0

Pra(1l — pra)
SN Rkt (1= pra) — pra(1 — 2§) = 0
DIAPY LS (xfi") - x((jn)pkd — Pkd +pkdx£ln)) =0
S0 1 Rk — (wé")pkd + Dkd — pkdxfin)) =N R — xfi”)

SN R (pra) = SN Rugc (257)
Therefore, solving for prq:
Drg = anlenk(mgn))
S Rk

10

Setting up derivative with respect to

Considering the constraint:
K m=1 (8)

Making use of a Lagrange multiplier A and define the Lagrangian as:
L(m,\) = Q(m, P) + A (Sr—ym — 1)
Differentiating the Lagrangian with respect to m:

oL 1
— =N Ru—+)\
(57Tk n=1 kﬂ'kJr

Setting the differentiated equation above to 0:
N 1
Sp—1Rok— +A=0
Tk

YN Rup = =g

Summing over k both sides:
S Zn Rk = —AS[

Now with the constraint 8 in mind:
Eszlanlenk =-A

Due to the constraint 8, for all n because the sum of responsibilities over all components for a given data
point is 1, so:
N=-X\A=-N
Plugging into equation for my:
SN Rup = Ny,
1

T = ﬁzglenk

11

d) Log Likelihood for different K

Log Likelihood

Log Likelihoods over Iterations for Different Values of K

—2400 4 k=3
—— k=3

=2600 - _— =4
_— k=]
— k=10

=2800 4

=3000

—3200 -

—=3400

—3600 1

a 5 10 15 20 25

fberation

Figure 3: Log Likelihoods over Iterations for Different Values of K

12

e) Responsibilities, Cluster Means & Probability Vector Images

Component 1 Component 2

Component 1 Component 2 Component 3

-,

Companent 3 Component 4

Component 2

Component 1

&

o el

Component 1 Companent 2 Component 3 Companent 4 Componant > Component & Companant 7
Camponent 1 Camponent ? Component 3 Component 4 Companant 5 Component & Component 7 Camponent & Companent 9 Component 10

LR A S L

Figure 4: Learned probability vectors as images for k = {2,3,4,7,10}, each run 5 times

From the Figure 4 above, for lower K values, the components tend to capture more general patterns of the
data, while for higher K values, the components might capture more specific features but might have a greater
risk of modeling noise. For k=10, we can see digits 2,7,0 and 5 appearing in the 8 x 8 images. The algorithm
works well, and finds good clusters. Looking at the responsibility of the EM algorithm, the numbers from
the responsibilities above imply that as K increases, clarity of cluster assignments might decrease.

13

Responsibilities
[[9.06916971e-02
[9.99999988e-01
[1.1202398%e-05
[9.99989816e-01
[9.96303442e-01

Responsibilities
[[1.27261398e-10
[7.18030490e-04
[1.74852030e-02
[4.35957508e-08
[6.27296953e-01

Responsibilities
[[2.68853285e-09
[4.89630097e-08
[3.28335001e-04
[3.83039874e-01
[1.13522657e-04

Responsibilities
[[1.39995644e-01
2.1773158%¢-04
[8.35537408e-01
1.77634927e-05
[6.49459203e-06
2.68054372e-02
[7.4864347%-01
1.94689654e-02
[3.77129069e-02
2.30090943e-03

Responsibilities
[[6.58715607e-04
6.65726645e-05
8.00509396e-05
[2.68440534e-03
7.91371872¢-08
2.88559033e-04
[9.36292570e-09
7.46175012e-09
7.86357331e-04
[1.06604477e-03
1.34550960e-06
2.23615448e-01
[4.37430452e-07
1.48516683e-05
5.30855128e-04

for K=2:

9,09308303e-011
1.22326696e-08]
9,99988798e-01]
1.01835030e-05]
3.69655805e—03]]

for K=3:

1.68645749e-04 9
7.8193443%e-02 9
1.11799726e-87 9.
9.04902582e-01 9
1.79263465e-01 1

for K=4:

6.66658555e-01 6
5.29583266e-03 6
1.33193951e-03 8.
1.42944980e-06 6
3.01688404e-03 1

for K=7:
.39525478e-05
.32694824e-01
.22783295e-02
.48638907e-02

.97025846e-03
.04681101e-01
.00910169e-01

1
4
7
2
.37549018e-01 8.
4
5
2
1
.48803085e-04 5

4
2
7
6
1
4.146465192-01
1
2
3
2

for K=10:
1.36626565e—-02 5.
4.78732836e-03 7.
1.42317530e-02]
8.33815324e-01 4.
5.35762170e-18 2.
5.60016197e-02]
9.03183690e-01 2.
7.2296585%9e—04 9.
2.18205614e—04]
1.00376395e-01 3.
4.31948427e-01 6.
1.47040991e-02]
4.38296391e-01 1.
2.16870094e—04 1.
3.7038689%9e-05]]

.99831354e-01
.21888526e-01

.50973747e-02
.93439582e-01]1]

]
]
82514685e-01]
]
]

.08705932e-05 3
.38647310e-03 9

.43555143e-01 1.
.71101134e-01]
.62028711e-05 5.
.72258338e-02]
30622084e-05 2.
.20708306e-01]
.39570821e-05 2.
.27953486e-02]
.29424606e-01 1.
.29389976e-01]1

90825550e-04 5.
22985576e-07 9.

30803860e-05 1.
31849291e-02 6.

74603003e-05 9.
34224020e-04 2.

75996474e-05 9.
7699888%e-02 1.

45548109e-05 5.
61503804e-08 1.

.33280571e-01]
.88317645e-01]
86665845e-01 1.
.1553028%e-01 1.
.36899894e-01 8.

11673880e-01]
428406709e-03]
59970499e-0111
23915706e-02
71396855e-87
01163671e-04
386890128e-03

26305092e-05

34741321e-05
65867900e-01

97595352e-02
43824673e-02

39256349e-02
01445074e-04

86339777e-05
60452119e-01

59798026e-01
09095949e-03

Figure 5: Responsibilities m, for k = {2, 3,4, 7,10}

14

From the responsibilities figure above, and the cluster means as learned probability vector images in the
Appendix, for k=2, model is very certain about cluster assignments as the probabilities in the rows are close
to 1 or 0, suggesting a clear division. When k=3, there is still a high degree of certainty. As the K values
increase, the responsibilities are more distributed evenly across clusters for some data points or might be
assigning data points into too many clusters.However, when looking at the cluster means(Appendix), and
the learned probability vector images, it might say otherwise. As the number of K increases as shown in
Figure 4, the cluster assignments are much more certain. Improvements to the Model:

e Better initialization strategies can lead to more consistent solutions, such as using k-means clustering
to initialize the means.

e Tuning the convergence criteria (tolerance, maximum iterations) can ensure the algorithm has con-
verged properly.

f) GZip & Naive Encoding

To express the log-likelihood in bits, we converted the natural log likelihoods to base 2. THe natural log is
converted to log base 2 as:
In(x)
loga(x) =

In information theory, entropy is typically measured in bits, which are units of information based on binary
logarithms (base 2).The notion of entropy is tied to the efficiency of encoding schemes: a lower entropy
suggests that less data is required, on average, to encode samples from the distribution. we can interpret
the log-likelihood as an average code length in bits required to encode the data if we were to use an optimal
code based on the probability distribution estimated by our model.

Table 2: Sizes and Log likelihood of Data

Log-likelihood -4452
Naive Encoding Length | 6400 bits
GZip Compressed Size | 5544 bits

From the table, the negative value suggests that we’re dealing with the log of a probability less than
1, which is typical in information theory when calculating entropy or expected message length. The naive
encoding length is the total number of bits required to store the data without any compression, simply by
storing each binary pixel directly, amounting to 6400 bits for the dataset. The compressed size using gzip,
which is 5544 bits, indicates that gzip is able to compress the data to a size that is less than the naive
encoding, showing the efficacy of gzip’s compression algorithm in reducing the size of the data. However, the
compressed size is still larger than the magnitude of the log-likelihood in bits, which suggests that gzip, while
effective, does not reach the theoretical limit of data compressibility as implied by the model’s log-likelihood.
The difference between the gzip compression and the theoretical limit can be attributed to the practical
constraints and heuristic methods used in gzip, which, unlike the theoretical model, has to work with actual
data encoding and cannot achieve the entropy limit of the modeled distribution.

g) Total Encoding Cost

Table 3: Total Encoding Cost with k vs Gzip Compression

Total Encoding Cost: k=2 | 5071 bits
Total Encoding Cost: k=3 | 4732 bits
Total Encoding Cost: k=4 | 4730 bits
Total Encoding Cost: k=7 | 4027 bits

Total Encoding Cost: k=10 | 3780 bits
GZip Compressed size 5568 bits

For all values of K, total encoding costs are less than the data size compressed using gzip, which suggests that
the model-based encoding is more efficient in terms of space. As K increases from 2 to 7, total encoding cost
generally decreases, indicating that models with more components can capture the data structure better,
leading to more efficient encoding of data. However, as K becomes too large, the cost starts to diminish
which could be a sign of overfitting- where model starts to fit the noise. There seems to be an optimal range
for K. The table shows that with an appropriately chosen K, it can offer a better representation than gzip.

15

Problem 4: LGSSMs, EM and SSID

a) Kalman Filter & Kalman Smoother

Estimated States from Kalman Filter Estimated States from Kalman smoother

34
2 -
2 4
1
0 3
LS E
E £
a it
ww o 0
g &
0 4
8 &
14
_1 -
-2 -2
T T T T T T T T T T T T
0 200 400 B600 800 1000 0 200 400 600 800 1000
Time Time
Uncertainty of estimate at each timepoint for Kalman Filter Uncertainty of estimate at each timepoint for Kalman Smoother
=4 4
_95 -
] 3
g7 &
o o —10.0 4
[&] [¥]
_ =6 -
o
£ g
w wi
s B -10.5 4
2 _7 s .
5]
£ s
£ =
5. §
[T R —_ 4
2 & -110
g o
3 k!
_9 |
-11.5 1
T Ny r T T ' T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Figure 6: Estimated States from Kalman Filter y;|z1.; vs Kalman Smoother y;|z1.7 over Time

The top two plots show the estimated states from the Kalman Filter (left) and Kalman Smoother (right)
respectively. The Kalman Filter provides real-time estimates as new data comes in, thus it can be more
reactive to recent observations, which may lead to more volatility in the state estimates. This can be
observed as more fluctuations in the state lines. The Kalman Smoother, on the other hand, adjusts the state
estimates by considering both past and future observations, leading to smoother state estimates which are
less influenced by recent noise.

The uncertainty in the state estimate at any given time point during smoothing is influenced by observa-
tions that occur later in time. Future observations can provide context that is not available at the moment
when the Kalman filter makes its predictions, such as revealing dependencies that only become apparent
later. The Kalman Smoother, on the other hand, shows a significant reduction in uncertainty (higher log
determinant values) for most time points, with a dramatic increase towards the end. The Kalman smoother,
as shown, provides a more accurate estimate by considering the whole dataset, which shows why V (un-
certainty on the estimate) decreases over time compared to the filter, which utilizing data up to only that
current state.

16

b) EM on ssm_spin.txt training data
Update for Rnew:
M-Step for R:
p(ai|ye) o< exp <—;(ﬂft —Cys)" R~ (4 — Cyt))

The goal is to maximize the expected log-likelihood with respect to R, given current estimates of y; and C.

Ryew = argmax Inp(x
gn <Z p(tlyt)>q

t

Since the log probability of the Gaussian distribution is give by:
In =1 Lz - TR (z; — _ L4 -1
plwelye) = ln | (eap(5(ze — Cye)” B (21 = Cyr)) | — 5 Inf2m R

where |27 R™!| denotes the determinant of 2 R~! which is part of the normalization constant of the Gaussian
distribution. The log of an exponential function simplifies to the exponent:

1 _ 1 _
i (oo = O "R o = Cu)) = = 5 = Co) R (o =)
The normalization constant term becomes:
1 LT .
~3 In|2rR™| = -3 In |det(R™")| — constant

Combining these results to gain expression for log likelihood for entire data-set:

1
=S (z — Cy) "R (e — Cupy)

T _
ST () = —5 W ldet(R™)| -

The quadratic term, when expanded becomes:
1 _
EtT 1@ = Cy) " R™ (e — Cye) = =58 (] Ry — ol BT Cyp =y CTR™ 'y + 4 CTR™' Cyy)
Thus, the final arg max argument becomes:

T 1
ST Inp(xy:) = —§ln|det(R_1)\ - 52?:1 (zf R'ay —af ROy — yf C"R™ 'y + 4/ CTR™'Cyy)

Using (STT[AB] = BT, and using matrix calculus, for matrix X:
d1n |det(X)] N
— (X 9
el (x)
SATXB
— —— = ABT 10
53X (10)

Differentiating first term of Equation 7?7 and using Equation 10:

)
SR

6 1 _ _ _ _
SELudnp(ain)) = 5 B+ 50 (<5500 (T Rt = o ROy~ yECTR a4 CT R

o{- 1
5;_}1 <—2Zf_1 (zf R 2y —2{ R'Cy —y/ C"R™ 'y + y{ CTR™ 1C’yt))

1
= —aEle(xtxf — T1y; ot — C’yta:t + C’ytyt c’)

17

Setting ﬁ{l =0:
T 1

§RT = 523:1(%30? - iﬁtytTCT - CthUtT + CytytTCT)
Dividing by T:
1
Rpew = TEtT=1(17t$tT —zyp CT — Oy + Cyyi CT) (11)

As from lecture notes for C,,.,, derivation:

Cne'w = (Etxt<yt>T) (Et<ytytT>)_

Substituting Cy,c,, in expression Cyyf C7:

T T
Z Cnewytygcrjl;w = Cnew (Z yt@?) Clz:ew
t=1 t=1

= <éxtyf> (tz:ytyf)) <tz:ytyf> (éwﬁ) : (éxﬂf)

1

T T -1
= (me) (Zwﬁ) (wa)
t=1 t=1 t=1
T
= C’new (Z ytx$>
=1

1

T

1
. Substituting this into equation 11:

T T
T T T
E Tty — § Ty C’ncw
t=1 t=1

where: Chew = (Zthl xtytT> (ZtT:I ytytT)

1
Rncw = 7
T

Update for Qnew:
M-step for Q:
1 _
P(Ye41]ye) o exp {—2(yt+1 — Ay)" Q7 (e — Ayt)}

The goal to maximize the expected log likelihood with respect to Q, given estimates of y; and A:
T
Quew = arg max <Z lnp(ytyt1)>
t=2 q

Same as for R, , since log probability of Gaussian distribution is given by:

i prlye—1) =10 ((a5 = Ap2)"Q o = o))) = 5 Inldet (@

In ((GIP(—;(% —Ay1)"Q (ye — Aytl))) = _%(yt — Ay)" Q7 (e — Ayi—1))

The normalization constant term becomes:

T et(@ 1))

Combining these results to gain expression for log ikelihood for entire dataset:

T-1
2

L (ye — Aye—1)TQ (yr — Ays—1))

In [det(@~1)] - 5

Zthz In(y¢|ye—1) =

18

The quadratic term, when expanded becomes:

1 _ 1 _ _ _ _
—5(% - Ayt—l)TQ 1(yt — Ay 1)) = _§E?=2(y?Q 1yt - ?JtTQ lAyt—l - ytT—lATQ 1yt + ytT—lATQ 1l/t—1)

Using the same Equations 9 & 10:

1) T-1 - 1 _ _ _ _
75Q_1(E?:1lnp(yt|yt71)): 2 QT+5C§}1 (_QEtT_Q (y?Q lyt—y?Q lAytfl—y;{1ATQ 1yt—|—y;{1ATQ 1yt1)>
5{} 1 T T -1 T -1 T TH—1 T TH—1
5Q-1 \ gi=2 (W Q 'y — v QM Ay — Y1 AT Qe + Y AT QT)

1
= — Syl — eyt 1 AT — Ayeaye + A1y AT)

2
Setting Mj% =0:
-1, 1l.p T T AT T AT
TQ = §Zt:2(ytyt -y 1 AN — Ayye + Ayeay, 1A
Dividing by T — 1:
1
Qnew = ﬁEtTZQ ((ytytT - yty;T—lAT — Ay 1y + AytflytT—lAT)) (12)

As from lecture notes for A,,.,, derivation:

Anew = (Se=2 (yeyi—1)) (Zt:2<ytytTfl>)71

Substituting A, into expression Ay; 1yl ; AT:

T T

ZAnewyt—lytT_lAfew = Anew (Z yt—ly,tT—1> Agew

t=2 t=2
T T -1 7 T

= ZytytT—1> (Z ytytT—l) (Z yt—lytT_1) (ZytytT—1>
=2 t=2 t=2 t=1

[
_ (iyt_lyg> (iyt_ly?_1>_ (izmw?)
A

-1

(Z ytytT_1>
t=2
t=2

1
where: Apew = (ZtTZQ yt_ly?> (ZtTZQ ytyf) . Substituting this into equation 12:

1
Qnew - ﬁ

T T
Syt - (z yy> AT
t=2 t=2

19

EM on ssm_ spin.txt training data

Log Likelihood with increasing numbers of iterations under True Parameters
7500

-7600

-7700 1

Log Likelihood

~7800 1

—7900 4

0 10 20 30 40 50
Ikerations

(a) Log-likelihood over 50 iterations under true
parameters

Log Likelihood over 50 iterations

-7500

-8000

-8500

—9000

Log Likelihood

-9500

10000

—— Initial parameters
—— Random Choice 1
—— Random Choice 2
—— Random Choice 3
—— Random Choice 4
—— Random Choice 5
Random Choice 6
—— Random Choice 7
Random Chice 8
~—— Random Choice 9
—— Random Choice 10

0 10 20 30
EM Iterations

a0 50

(b) Log-likelihood over 50 iterations

Log Likelihood over 100 iterations

-7500

-8000

-8500

—9000

Log Likelihaod

-9500

-10000

~— Initial parameters
~—— Random Choice 1
—— Random Choice 2
—— Random Choice 3
—— Random Choice 4
— Random Choice 5
Random Choice &
—— Random Choice 7
Random Choice 8
~— Random Choice 9
= Random Choice 10

a0 60 80 100
EM Iterations

(c¢) Log-Likelihood over 100 iterations

Figure 7: Log-likelihoods values computed of 50&100 EM iterations for LGSSM with ssm__spins.txt training

data

From Figure 6(a), even if the initial parameters are true parameters, the EM algorithm still undergoes a few
iterations to ensure that it haws reached a point of convergence. This is due to the iterative refinement and
relies on the convergence criteria which is placed in the Appendix Code for this question. The EM algorithm,
even with true parameters, it is common for initial fluctuation in log-likelihood as it refines the estimates.
Additionally, it could be the stochastic nature of the data. From the first figure above, all the curves exhibit
a steep increase with 10 different random initial conditions during the initial iterations. This indicates that
EM algorithm makes significant improvements to parameter estimates in the early iterations. Similar trends
are seen with the log-likelihoods in 50 iterations and 100 iterations, EM algorithm still converges between

15-30 iterations.

c) EM on ssm_spins_test.txt test data

EM on ssm_spins_test.txt test data

20

Log Likelihood vs Iterations
—7400 A Log Likelihood over 50 iterations

~7500

—7600

-8000
=7800 4

-8500
—B000

Log Likelihood

—— Initial parameters
Random Choice 1
—— Random Chaice 2

Log Likelihood

~9000
82001 — Random Choice 3
—— Random Choice 4
—— Random Choice 5
-8400 —3500 Random Choice 6
—— Random Choice 7

Random Choice 8

Random Choice 9

0 10 20 30 40 50 -10000 — Random Choice 10

iterations

[10 20 30 40 50
EM Iterations

(a) Log-likelihood over 50 iterations under true
parameters (b) Log-likelihood over 50 iterations (10 random choices

Log Likelihood over 100 iterations

-7500

—8000 +

-8500

—— Initial parameters
Random Choice 1
—— Random Chaice 2

Log Likelihaod

-9000 -

—— Random Choice 3
—— Random Cheice 4
-9500 —— Random Choice 5
Random Choice 6
—— Random Choice 7
Random Choice &
~10000 1 Random Choice 9
— Random Choice 10

[} 20 40 60 80 100
EM Iterations

(c) Log-likelihood over 100 iterations (10 random choices)

Figure 8: Log-likelihoods values computed of 50&100 EM iterations for LGSSM ssm_spins_test.txt test
data

In, Figure 8(a), depicting the test data, shows a sharp increase in log-likelihood in the initial iterations,
which then levels off, much like the training data. However, the log-likelihood in the test data doesn’t reach
the same height as in the training data, which is common since models usually fit better to the data they
were trained on. Nonetheless, the increase and leveling off indicate that the model, with parameters learned
from the training data, generalizes to the test data, capturing its underlying structure. In this Figure, the
EM algorithm converges later than when it is run on the training data as there is a less steep curve as
compared to Figure 7(a).

In both figures, the log-likelihood values indicate the EM algorithm’s effectiveness in parameter estima-
tion. With each iteration, the algorithm refines the estimates of the model parameters to better fit the
data, reflected in the increasing log-likelihood values. The plateauing effect illustrates the convergence of
the algorithm, where further iterations do not significantly increase the fit of the model to the data, as
measured by the log-likelihood. This suggests that the EM algorithm has effectively learned the parameters
that best represent the underlying process that generated the data. The behavior in the test data confirms
that the learned model is not just memorizing the training data but also capturing general features that can
be applied to unseen data.

Problem 5: Decrypting Messages with MCMC

a) ML Estimates Formulae & Probability Estimates
Model given, so that each symbol is independent of the preceding text given only the symbol before:

p(s1, 52,0y 8n) = p(s1)II_op(s455-1)

21

Letting S be the set of all symbol and C' = |S’| be the cardinality of S. This also means k is the number of
symbols.

Let N : S — N be the count of number of occurrences of symbols and pairs in "war-and-peace.txt".

The transition matrix ¢ € R¥** satisfies:

— N(B)
We can define a transition matrix T, where T;; is probability of state i transitioning to state j. As denoted
from above, there are S states and we have the following constraints:

=Ty =1 (13)

Therefore,
logP(S) = logP(S1 =t) + %, jnjlog(T;;)

From N : S — Nt be the count of number of occurrences of symbols and pairs, n;; os number of times
i — j. The Lagrange functions become:

E(T) = lOgP(Sl = t) —+ Ei,jnijlog(TiJ—) — E;—gzl (Ai(Eleﬂj—l))
Deriving the Lagrange function with respect to T;;:

OL(T) _ mnyy _
5Ty Ty —xi=0

To get T;;:

Since the constraints 13:

»s_ i _y

Jj=1 i -

Multiplying by A;:

/\i = Zf:l Nij
Substituting back into the transition matrix Tj;:
n—1j
T‘i' = S
X7 nij

hence, this gives the transition probability by ML estimation. To solve for the stationary distribution ¢ of
the Markov chain, let’s denote ¢ = [¢(u),¢(S)] as stationary distribution, and T as the transition matrix
with elements 7;;. The relationship of ¢ and T can be expanded into a system of linear equations:

P(u)Tu1 + ¢(0)Tp1 + -+ ¢(S)Ts1 = ¢(1)
¢(u) Ty + p(v)Tp2 + -+ + ¢(S)Ts2 = ¢(2)

d(u)Tys + ¢(v)Tys + -+ + ¢(S)Tss = ¢(S5)

where each equation corresponds to one state of the Markov chain, and coefficients T;; are the probabilities
of transitioning from state j to state i. In order to solve ¢, we need to find a vector that satisfies this system
of equations and constraint that probabilities will sum to 1:

B1) +0(2) + -+ 0(S) = 1

22

In matrix form:

T T Tis
To1 T Tas
[6(1) (2) o(9)] : = [o(1) ¢(2) o(9)]
Ts1 Ts2 Tss
This simplifies to:
T =¢

Symbol Transition Heatmap Lo

- 0.6

First Letter
9
O

- 0.4

- -02

-0.0

Figure 9: Transition Matrix T: Columns on the x axis represent the current symbol(S;) and Rows on the y
axis represent the S;_1

23

Stationary Distribution of Symbols

0.175

0.150 1

0.125 -

0.100 1

Probability

0.075
0.050
0.025 1

0_000.........-............ —T — T T T T T T T T T T T T T

T T
n ' R e = B LT A I B B =T = Tl = I =R T - R B T

Figure 10: Estimated Stationary Distribution of the symbols

b) Joint Probability given o

Latent variables o(s) for different symbols s are not independent. This is because each symbol in plain text
is mapped to a unique symbol in the encrypted text, such as shown here:

ola) =s

This indicates that other symbols in the S = {s1, 82, 83.....5,, } cannot be equal to s, except for ’a’ which
belongs in the S dataset.

o(s;) #s

In this case, let us denote:
{s1, 2, $3.....5, } = decryptedtext

{e1, €2, $3.....en } = encryptedtext
o=ep — Sy,

Initial probability is denoted as:
P(eilo) = ¢(o (er))

where ¢ is stationary distribution of decrypted symbols and o~ ! is inverse mapping the encrypted symbol
back to decrypted symbol.
Transition probability is denoted as:

P(ei|ei*17 J) = To—l(ei,lo—l(ei))
Joint probability of encrypted text given permutation o is:
P(eq, ez, 85.....en|0) = (e1]0)II_ s P(eilei—1,0)

P(e1, ez, 85.....ep|0) = P(e1)

Given these components, the full joint probability expression for encrypted text given the permutation o is:

P(ey, ez, 83.....epl0) = ¢(U_1(61))H?:2Ta—1(ei,la—l(ei))

24

c) Acceptance Probability in MH algorithm

As proposal function S is symmetric, the probability of proposing move from permutation o to ¢’ is the same
as probability of proposing a move from o’ to o. Therefore, this can be seen as:

ﬁ ifo o

S(O’—)J/)Z{

0 otherwise

Given a current state o, algorithm proposes a new state ¢’ by swapping two symbols at random Likelihood
¢(o) of a permutation o is probability of observing the encrypted sequence under that key which is written
as:

p(0) = Pler]o)I7y P(eilei—1,0) (14)
As S(o0 = 0') <> S(o/ — o):
= P(s1)I[oP(s4]si-1)

Using Equation 14:

¢(0')S(0" = o) _ Plo'(er)) pn Plo’(ei)|o’(ei-1))

¢(0)S(0 = 0’) — P(o(er)) =2 P(o(es)|o(ei-))
) P(e;lei—1,0")
=2 P(P(eslei—1,0)

From this above, we can denote it as:
¢(0")S(0" = o)
¢(0)S(o — o)

Therefore, the acceptance probability is:

o(d")S(c" — o)
¢(0)S(o — ')

a =min{l,

}

As the proposal probability is symmetric, we can cancel the S(o — ¢’) < S(o’ — 0):

¢(0’)
¢(a)

a =min{l,

}

d) MH algorithm

For Metropolis Hastings sampler, here I have given the pseudocode to what I coded in order for the decryption
to occur. This summarizes the code I have put in Appendix: Question 5 Code.

25

Algorithm 1 Metropolis-Hastings for Decryption

1: Input: Encrypted message, reference text "War and Peace’, symbols file
2: Output: Decrypted message

3: procedure INITIALIZE

4: Load encrypted message and symbols

5: Analyze frequencies in message and reference text

6: Map common symbols between them

7 Prepare transition matrix Tyopm from reference text

8: procedure METROPOLISHASTINGS

9: Start with initial permutation from frequency analysis
10: for each iteration do
11: Propose new permutation by swapping symbols
12: Calculate and compare log-likelihoods
13: Accept new permutation if likelihood is higher
14: if iteration is a multiple of 100 then
15: Preview decryption
16: Record best score and permutation
17: procedure OUTPUT
18: Decrypt message using best permutation
19: Display decrypted message

The first run of my code didn’t converge until 15200 iterations. Therefore, to make MH sampler more
efficient, we used the transition matrix to see how letters are commonly arranged in the language. The
algorithm now has a map as a guide that tells it which symbol in the encrypted message corresponds to the
alphabet. It then tries many different combinations, making small changes each time (like swapping two
letters around), to find the best match. It scores each attempt by how much it resembles the expected lan-
guage structure and keeps track of the highest score. Furthermore, we used multiple initialization attempts,
each time tracking the highest likelihood score achieved. The permutation with the overall highest score
across these attempts was considered the best solution, yielding the most sensible decryption. This multi-
initialization attempt was to aid in the potential problem of converging to local optima, instead directing
the search toward the global optimum in the space of possible decryption. Both the original attempt code
and the "smart initialization" code are placed in the Appendix below (Appendix: Question 5)

26

Attempt 1, Iteration 180: Decrypted: oufw(f(rpu;esf u?fwrsef!pzues bzefle sifw(fy adesf; !efwefir

Attempt 1, Iteration 280: Decrypted: ountfnfapu;esn u?ntasenbpzues wzenfe sintfny rdesn; bentenia

Attempt 1, Iteration 300: Decrypted: orntfnfapr;esn rcntasenwpzres bzenfe sintfny udesn; wentenia

Attempt 1, Iteration 480: Decrypted: oritlilaprvesi rcitaseiwpgres bgeile snitliy mdesiv weiteina

Attempt 1, Iteration 580: Decrypted: or tl laprdes irc tase wpgresibge leisn tl yimhes diwe te na

Attempt 1, Iteration 6@08: Decrypted: or tl laprdes irn tase wpgresibge leisc tl yimhes diwe te ca

Attempt 1, Iteration 70@: Decrypted: or tl laprnem ird tame wvpfremibfe leimc t1 yishem nive te ca

Attempt 1, Iteration 88@: Decrypted: or ml laprnet ird mate vpfretibfe leitw ml yishet nive me wa

Attempt 1, Iteration 900: Decrypted: or mf faprnet ird mate cplretible feitw mf yishet nice me wa

Attempt 1, Iteration 10@@: Decrypted: or mf faprnet ird mate cplretible feitw mf yishet nice me wa
Attempt 1, Iteration 1108: Decrypted: or mf faprnet ird mate cplretible feitw mf yishet nice me wa
Attempt 1, Iteration 120@: Decrypted: or mf fapruet ird mate cplretible feitw mf yishet uice me wa
Attempt 1, Iteration 130@: Decrypted: or mf fapruet ird mate cplretible feitw mf yishet uice me wa
Attempt 1, Iteration 14@@: Decrypted: or wf faprues ird wase cplresible feism wf yithes uice we ma
Attempt 1, Iteration 1508: Decrypted: or wy yaprues ird wase cplresible yeisn wy fithes uice we na
Attempt 1, Iteration 16@@: Decrypted: ar gy yoprues ird gose cplresible yeisn gy fithes uice ge no
Attempt 1, Iteration 170@: Decrypted: ar gy yoprues ird gose cplresible yeisn gy kithes uice ge no
Attempt 1, Iteration 18@@: Decrypted: ar gy yourfes ird gose culresible yeisn gy kithes fice ge no
Attempt 1, Iteration 19@@: Decrypted: ar py yourfes ird pose culresible yeisn py kithes fice pe no
Attempt 1, Iteration 2008: Decrypted: ar py yourfes ird pose culresible yeisn py kithes fice pe no
Attempt 1, Iteration 210@: Decrypted: ar py yourfes ird pose culresible yeisn py kithes fice pe no
Attempt 1, Iteration 220@: Decrypted: ar py yourkes ird pose culresible yeisn py fithes kice pe no
Attempt 1, Iteration 230@: Decrypted: ar py yourges ird pose culresible yeisn py fithes gice pe no
Attempt 1, Iteration 2488: Decrypted: ar py yourges ird pose mulresible yeisn py fithes gime pe no
Attempt 1, Iteration 250@: Decrypted: ar py yourges ird pose mulresible yeisn py fithes gime pe no
Attempt 1, Iteration 260@: Decrypted: ar py yourges ird pose mulresible yeisn py fithes gime pe no
Attempt 1, Iteration 270@: Decrypted: ar py yourges ird pose mulresible yeisn py fithes gime pe no
Attempt 1, Iteration 2808: Decrypted: ar py yourgen ird pone mulrenible yeins py fithen gime pe so
Attempt 1, Iteration 2988: Decrypted: ar py yourgen ird pone mulrenible yeins py fithen gime pe so
Attempt 1, Iteration 380@: Decrypted: ar py yourgen ird pone mulrenible yeins py fithen gime pe so
Attempt 1, Iteration 310@: Decrypted: ar py yourgen ird pone mulrenible yeins py fithen gime pe so
Attempt 1, Iteration 320@: Decrypted: ir py yourgen ard pone mulrenable yeans py fathen game pe so
Attempt 1, Iteration 330@: Decrypted: ir py yourgen ard pone mulrenable yeans py fathen game pe so
Attempt 1, Iteration 340@: Decrypted: ir py yourgen ard pone mulrenable yeans py fathen game pe so
Attempt 1, Iteration 350@: Decrypted: ir py yourgen ard pone mulrenable yeans py fathen game pe so
Attempt 1, Iteration 36@0@: Decrypted: in my younger and more pulnerable years my father gape me so
Attempt 1, Iteration 370@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 380@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 390@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 400@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 410@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 420@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 430@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 4408: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 450@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 460@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 47@@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 4888: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 49@@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 580@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 510@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 520@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 5388: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 540@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 550@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 56@@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 570@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 580@: Decrypted: in my younger and more vulnerable years my father gave me so
Attempt 1, Iteration 59@@: Decrypted: in my younger and more vulnerable years my father gave me so

1

Attempt Iteration 600@: Decrypted: in my younger and more vulnerable years my father gave me so

-

Figure 11: 6000 iterations for decrypting text ending with Metropolis Hastings algorithm; Best Decryption:
in my younger and more vulnerable years my father gave me so

27

e) Ergodicity

Y(a, B) does affect the ergodicity of the chain. When some transition probabilities are 0, this indicates that
some states cannot be reached from others. This does not necessarily violate ergodicity, as long as there is
an indirect path between every pair of states and the chain can still visit all states with non-zero probability
in the long run. The proof for ergodicity, in the context of this question, involves several steps. Given the
structure of our Markov chain and transition probabilities, we need to prove that the Markov chain is both
irreducible and aperiodic.

Irreducibility Proof
e Let X be finite set of all symbols

e Let S be the state space of Markov chain, where each state s € S corresponds to permutation of
symbols in X

e Let T be transition matrix obtained by MLE, where Tj; is probability of transition from state ¢ — j

We must show for every pair of states o, 8 € S, there exists a non-zero probability path from « to 5.
This can be a sequence of intermediate states.
Given any two permutations « and 3, through series of swaps, each is a valid transition in the Markov chain.

X = n|

where n is a finite number of symbols, the number of required swaps is finite. Such as in War and Peace
text, transition probabilities T;; are derived from observed frequencies of symbol pairs with smoothing terms
added to ensure all Tj; > 0. Through MH algorithm, the probability of proposing any swap is positive. We
construct a sequence of states from « to f3:

g, 02, Az, ...,
Thus, probability of any permutation through a finite number of swaps is non-zero.
P(ao —) = Pla = a1)P(o1 = a2).....P(ag—1 —) >0

Thus, Markov chain is irreducible.

Aperiodicity Proof

A state o € S is aperiodic if greatest common divisor GCD of all possible return times to « is 1. To prove
aperiodicity, we need to show that for any state «, there is a positive probability of returning to «, there is
a positive probability of returning to a at times that are not multiples for some k > 1.

Define d(«) as period of state o which is the greatest common dividor of all n such that 7%, > 0. In MH

(a7
algorithm, as proposal is symmetric, to propose a swap back to original «;, it is possible to have:

Too >0
Hence, every state « is aperiodic. Hence:
e Irreducibility: Va,8 € S,3P: P(a —) >0
e Aperiodicity: V alpha € S, ged{n > 0|T%}, >0} =1

f) Different Approaches to decoding
Symbol Probabilities alone:

This is not sufficient. It does not account for context or order of symbols. In English, pairs of letters occur
with high frequency which this model cannot exploit.

28

2nd Order Markov Chain:
In the 1st order Markov chain, we have a transition matrix P where F;; is probability of transitioning from
T —> 7
P = [P”}, i,] € {1, 2, TL}
Matrix dimensions for n states are n x n. For a 2nd order markov chain:
P = [Pjkl;i,j,k € {1,2,...n}
Transition probabilities for 2nd order:
P(S|Si—1 = 54,51—2 = s;) = Piju,

Therefore:
Numberofparameters = n®

This becomes a tensor representation:
P c R’anXn

For 2nd order MC, this does work, but this complexity can be prohibitive for large symbol sets or when
computational resources are limited.
Encryption Scheme with Non-unique Mappings:
Two symbols mapped to same encrypted value, this does not work. Let’s denote:
e Y as the set of all plaintext symbols.
e F as the set of all encrypted symbols.
e 0:Y — F as the encryption function.

e 07! : E — 2% as the decryption function, where 2 denotes the power set of ¥ due to non-unique
mappings.

For non-unique mappings:
81,82 € 3,81 # s2:0(s1) =0(s2) =e
For decryption with ambiguity:
o) = {s1,52}
For likelihood of a decryption:
P(S=s|E=c¢e)
If o~ ! is not a function but a relation due to non-unique mappings, the likelihood must consider all
mappings:
P(S=s1|E=¢e)=P(S=s3|E=c¢)
This results in a set of possible plaintexts for each encrypted symbol:

Ve € E,07*(e) is not a singleton

The decryption process must then consider all combinations:

P(S,S...8, | E\E;...E,) = > P(S) =s,,S80 =s,...,8,=5,)

n
(89,8580)€™ H(E)Xo~ (Ep) X...x0 " (Ey)

This sum will run over all combinations of possible symbols to each encrypted symbol, leading to endless
combinations as number of symbols increases.

29

Chinese Language:

This would not work with Chinese. There are too many symbols where > 10000 and computational power
is limited. Let ¥ represent the set of Chinese characters with cardinality |X| = N.
State space size for substitution cipher:

15| = N
Mapping space:
M| = (N - 1N
First-order transition matrix size:
|T| = N?
Second-order transition tensor size:
Ty = N°

Tterations for convergence (minimum):
Ttermin x |S| = N!
Corpus size for accurate transition probabilities estimation:
Corpusy,, o< N? (first-order)

Corpus,;,, < N* (second-order)

size

Computation time - 1 iteration:
O(N?) (matrix operations)

Total computation time:
O(N? - N!)

Given factorial growth of state space, and cubic growth of transition tensor, computational resources are
insufficient for this large N.

Problem 6: Implementing Gibbs Sampling for LDA

a) ToyExample.data

The code for the graphs below are as attached in Appendix: Question 6. In the python code file gibbs _sampler.py,
there were 6 todos that had to be implemented in order to achieve the graphs in part 6a). The functions
that needed to be implemented are as documented below.

30

Log Likelihood of Training Set split in ToyExample.data with GibbsSampler
-260

-280
-300

loglike

-320

-340
— frain
-360
0 50 100 150 200

iteration

Figure 12: Standard Gibbs Sampler implemented on toyexample.data training set

Log Likelihood of Test Set split in ToyExample.data with GibbsSampler

-36 — test

0 50 100 150 200
iteration

Figure 13: Standard Gibbs Sampler implemented on toyexample.data test set

31

Log Likelihood of Training Set split in ToyExample.data with Collapsed Gibbs Samp

-300

loglike

-350

-400 — train

0 50 100 150 200
iteration

Figure 14: Collapsed Gibbs Sampler implemented on toyexample.data training set

Log Likelihood of Test Set split in ToyExample.data with Collapsed Gibbs Samp

—33 test

0 50 100 150 200
iteration

Figure 15: Collapsed Gibbs Sampler implemented on toyexample.data test set

From Figure 11 and 12 above, roughly around 20-30 iterations, the log likelihood of the training and test
data with standard Gibbs sampling reaches around -270 and -33 respectively before they fluctuate repeated
for 180 iterations. In Figure 13, with Collapsed Gibbs Sampling on the training data, it increased rapidly
until around 15-20 iterations, and fluctuates around that value at -300 approximately for 180 iterations. In
Figure 14, it was fluctuating repeatedly for the 200 iterations.

32

b) Autocorrelation

Autgg_lorrelation of Log Likelihood (Train) - Standard Gibbs Sampler

0.2

0.0

Autocorrelation

0 100 200 300 400 500
Lag

Au@gorrelation of Log Likelihood (Test) - Standard Gibbs Sampler

0.2

0.0

Autocorrelation

0 100 200 300 400 500
Lag

Figure 16

33

Aut%cgrrelation of Log Likelihood (Train) - Collapsed Gibbs Sampler

0.2

Autocorrelation

0 100 200 300 400 500
Lag

AutB%orrelation of Log Likelihood (Test) - Collapsed Gibbs Sampler

0.2

Autocorrelation

0 100 200 300 400 500
Lag

Figure 17

In this question, I increased the number of iterations for Standard and Collapsed Gibbs Sampling to 2000
iterations to reduce noise in the autocorrelation plots as shown below. Intuitively, we discarded 30 burnin
iterations and plotted the autocorrelations as shown above. From the autocorrelation plots, the samples are
less correlated and have reached point of fluctuations where the Markov chain provides representative set
of samples from posterior distribution. From Figure 17 for Collapsed Gibbs Sampler, autocorrelation drops
sharply and fluctuates around 0 quickly suggesting burnin period is short. For Figure 16, in Standard Gibbs
Sampler, burnin period is alot longer than Collapsed. It takes an estimate of more than 10 iterations to
start fluctuating around zero. About 20-40 samples will be required for the Gibbs sampler until we have a
representative set of samples from the posterior. This is because autocorrelation drops below 0.1 within the
first 50 lags of both Gibbs samplers and for the Collapsed Gibbs Sampler, this is even lower from the start,
which means that it requires a shorter burn-in. However, to further improve this to obtain a representative

34

set from the posterior, I could have sampled every 10 iterations to reduce autocorrelation further.

c) Gibbs Sampler Convergence

The Collapsed Gibbs Sampler converges faster. Comparing Figure 16 and 17, Collapsed Gibbs Sampler’s
training and test autocorrelation plots show very low initial values that stabilize and fluctuate around 0,
indicating a faster convergence as compared to the Standard Gibbs Sampler. This could also be because
Collapsed Gibbs Sampler integrates out one of more variables (topic assignments), leading to reduced state
space. The resulting Markov chain demonstrates higher convergence at early lags, suggesting each iteration
provides a more independent sample from posterior distribution.

d) Varying parameters

Varying o

Log Likelihood (Training Set) with Standard Gibbs Log Sikelihood (Test Set) with Standard Gibbs

TR
_ =275 | A ”
- 275 § 1 '
2 -300 £ -300
e 2
= _325 ; -325
3 S

-350 -350

-375 -375

0 50 100 150 200 0 50 100 150 200
iteration iteration

o - _ _ Log Likelihood (Test Set) with Collapsed Gibbs
Log 2L5|I(<)ellhood (Training Set) with Collapsed Gibbs -250

-300

-350

log likelihood
log likelihood

-400 ~400

50 100 150 200 0 50 it1eorgti0n150 200
iteration

o

—— alpha=0.5
—— alpha=1
—— alpha=10

Figure 19: Log-likelihoods of training and test data with standard Gibbs Sampler and Collapsed Gibbs
Sampler, with varying alpha values

35

For test set, from the above figures, show mixed results. Standard Gibbs Sampler shows better performance
with o = 1 while Collapsed Gibbs has a less clear pattern. The model a = 1 seems to generalize better in the
standard Gibbs. Noting that higher log likelihood on test set indicates better generalization and predictive
performance, means that our values at lower alpha achieve better performance. A higher alpha suggest that
each document is likely to contain a mixture of most topics. A lower alpha value indicates a document is
more likely to be represented by fewer topics, which results in the fluctuations in log likelihood.

Varying [

Log Likelihood (Training Set) with Standard Gibbs L0 Likelihood (Test Set) with Standard Gibbs

-250 =250
T -275
§ -300 8
£ = -300
£ 350 2
= = —325
ke) o
-400 -350
-375
0 50 100 150 200 0 50 100 150 200
iteration iteration

o o]) Log Likelihood (Test Set) with Collapsed Gibbs
Log Likelihood (Training Set) with Collapsed Gibbs

-250
-250
©
3 T
2 -350 = -350
° <4
o s
~ -400 -400
0 50 100 150 200 0 50 .100 . 150 200
iteration iteration
— beta=0.5
—— beta=1
—— beta=10

Figure 21: Log-likelihoods of training and test data with standard Gibbs Sampler and Collapsed Gibbs
Sampler, with varying beta values

Similarly to «, 8 behaves the same way on the posterior probability and predictive performance. The beta
parameter influences the word distributions within topics. A lower beta promotes sparser word distributions,
implying that a few words are strongly associated with each topic. Lower beta results in more fluctuations in
log likelihood, indicating model is sensitive to changes in topic-word assembly. The plots suggest that beta=1

36

might offer a reasonable trade-off between these extremes, as indicated by relatively higher log likelihoods
for both training and test sets with the Standard Gibbs Sampler.

Varying K/Number of Topics

Log Likelihood (Training Set) with Standard Gibbs '-_0295(')-ike"h°°d (Test Set) with Standard Gibbs

F Oen £ At

-450 =450
0 50 100 150 200 0 50 100 150 200
iteration iteration

Log Likelihood (Training Set) with Collapsed Gibbs Log Likelihood (Test Set) with Collapsed Gibbs
~300 WWWWNM/\,/‘WWN” ~300

5% A oy % ok gty
o0 wWWwwwmww ~600 WW«/VWMW\A

0 50 100 150 200 0 50 100 150 200
iteration iteration

log likelihood
log likelihood

— K=3
K=5
— K=10
— K=15

Figure 23: Log-likelihoods of training and test data with standard Gibbs Sampler and Collapsed Gibbs
Sampler, with varying K (n_ topics)values

In this figure above, where for higher values of K, the model captures more restrictive patterns in the data,
which is indicated in the lower log-likelihood values for higher K on training set. In training set, Standard
Gibbs and Collapsed Gibbs samplers show higher log likelihood for lower K values. This shows maybe a
small K is sufficient to capture the themes of training data. This is the same for the test set. Optimal
number of topics is usually a balance with generalization and not overfitting. Plots suggest that for this
dataset, lower K values are better in predictive performance.

37

Problem 7: Optimization

a) Lagrange Multiplier Method & Local Extrema

In order to find the local extrema of the function f(z,y) = x + 2y subject to constraints y? + xy = 1.
Lagrange Multiplier Method: We are seeking for points where the gradient of f(x,y) is parallel to
gradient of constraint g(x,y) = y? + zy = 1. We define the Lagrangian as:

Lz, A) = f(z) —)
E($>ya)‘) = f($7y) -)\g(l',y)
L(z,y,\) =2 +2y — Ay* +ay 1)
Gradient of £ with respect to x, y and X is denoted as:
VL(z,y,\)=0

This gives us a system of equations of partial derivatives:

oL

—=1— 1

i Ay (15)
oL
— =2—-X(2 1
5 (29 +) (16)
5L,
= = -1 1
s~ Yty (17)

From Equation 15 and equating partial derivatives to 0:
Ay=1
1 .
A = —assumingy # 0
Y
Substituting this A into Equation 16:
1
2——2y+2)=0
Y
x

Z_0
Y

Given that y # 0, this implies that x=0. Substituting x=0 into constraint equation 17:
y*+(0)y—1=0
y2 —1=0
y==1

Thus, function values local extrema occur are (0,1) and (0,—1). To determine whether the points are
maxima, minima or saddle points, we use the bordered Hessian matrix for the constrained optimization
problem. Given the Lagrangian:

L(z,y,\) =242y —A\y*> +xy—1)
Calculating the partial derivatives with respect to x,y and X:

L _
ox2
5L

7

38

L 8L
Sxdy Sydr

The constraint function is g(z,y) = y? + xy — 1, so the partial derivatives are:

99 _
or Y
og
2 _9
5y y+x
The bordered Hessian H for a problem with 2 variables and 1 constraint is a 3 X 3 matrix:

o 9% 9
or Ay
99 L PL
Oxr 0r%2 0Ox0y
99 9L L
Oy Oydoxr Oy?

We'll evaluate this matrix at the points (0, —1) and (0, 1) and check the determinant of the bordered Hessian:
At the point (0, —1):

0o -1 =2
H=|-1 0 =X
-2 =X =2X

Remember, A\ = i, so at y = —1, A = —1. Substituting this in:

0o -1 =2
H=|-1 0 1
-2 1 2
At the point (0,1): Similarly, A =1 for y = 1, so:
0 1 2
H=1|1 0 -1
2 -1 =2
Computing the determinant of these matrices to determine the nature of points:
For (0,1):
det(H) = 0(0 — 1(=1)) = (=1)(=1(2) = 1(=2)) + (=2)(=1(-2) — 1(0))
det(H)=0—-2+4=2
For (0,—1):

det(H) = 0(0 — 1(=1)) = (1)(1(2) = (=1)(=2)) + (2)(1(=2) = (=1)(0))
det(H)=0—2—4=—6

Based on this, the function values point (0,1) is a maximum and (0,-1) is a minimum. Plugging these values
into f(x,y):
f(ov _1) =-2

f(0,1)=2

Therefore, the local extrema occurs at 2, and -2.

39

b) Newton-Raphson Method

Using Newton-Raphson method to compute in(a) for a given a € R*, we need to find the root of a function
where f(x,a) is equivalent to solving x in e” = a. We know that e” = a should be satisfied for x = In(a).
Therefore,

flz,a)=¢€¢"—a

From the above function derived:

The Newton’s Method Update Equation, iteratively finds better approximation to the roots of a real-valued
function. The general form of Newton’s method is:

Tn4+1 = Tn — f’(l‘)
n

Now substituting f(z,a) and f/(z) into Newton’s method update formula:

e’ —a
Tp4+1 = Tpn — on
a
$n+1 :xn_1+ otn

Problem 8: Eigenvalues as solutions of optimization problems

a) sup Ra(z)
rzeR?

Given a symmetric n X n matrix A, we define R(x):

qa(z) = 2" Ax (18)
A galo)
= = 1
) = S = g "
To prove:
Jrx € R"

such that R4(z*) = sup Ra(x) where z* is the point where R 4(x) attains its supremum in R™.
TER™
Consider the unit sphere, which is compact:

Sl = {z e R"|||al| = 1}

Ry(z*) = q[a;(*x;) =qga(xx) =M

as ||z*|] = 1 For any y € R", y # 0, let z = . Then z € S7=1 and:

qa(y) _ qa(2) =Ra(z) <M

ol P

Therefore, Ra(z*) > Ra(y) for all y € R™,y # 0. z* is point where R4 (z) attains supremum. Now, to show
that ga(x) is a continuous function at all points z inR™: Let x,z,, € R™:

Ra(y)

QA(:L‘) - qA(xn) =" Az - LL',Z;A.’L'n
Using linearity and symmetry of A, we expand:

qa(z) — qa(zy) = (& — x)T Az + 2L Az — x,,).

40

Applying the Cauchy-Schwarz inequality:
laa(x) = qa(@n)| < (2 — 2n) " Az| + oy A(z — z,)].
As norm is sub-multiplicative,
|ga(2) = qa(zn)| < [lz — zalll|Az]| + lz. || A(z — 20)]-
Let My = ||Az| and My = ||z, ||| 4] :
|94(x) — qa(an)| < [l — 20 [My + ||z — 2| Mo

|ga(2) = qa(zn)| < (lz = 2n|))(My + My).

Given € > 0,30 > 0 such that ||z — z,|| < § implies |ga(z) — ga(x,)| < €. Since ga(z) — qa(x,) can be made
arbitrarily small by taking x sufficiently close to x,, ¢a(z) is continuous at zg. Since x,, is arbitrary, ¢ (z)
is continuous everywhere in R”.

b) RA(CE) S)\1

Given the eigenvalues of A as A\; > Ay > ... >)\, and corresponding eigenvectors, {&1, ..., &, } which forms
an ONB, we need to prove that for any vector € R™, Rayleigh quotient R4(z) < Ay:
With x in terms of ONB of eigenvectors:

z =" (& 7)€ (20)
Using Equation 18:
n T n
qa(r) = (Zz':l(giTx)gi) A (Ej:1(5fx)gj)
Expanding using inner product linearity and eigenvalue equation:
AE; = &
qal(e) = S 20 (& 2) (€] 2)ENE;

With ONB:
EFN =6

qa(z) = B (£ 2)*N;
Now, we compute norm squared x:
T
2] = (B (&l 0)&) " (B7=1(E] 2)E;)
= (B (& 2)”
Substituting this into the Rayleigh Quotient formula 19:

P (&)
RA(w) = Zn_l(ETI)Q

As) is the largest eigenvalue for all i, A\; < Ap:

n T,\2Y .
RA(CC) < Zi:l(gi {E))‘2 _)\1

N Zzn:l(giT$>2

Thus, Ra(z) < A1.

41

¢) Ru(z) < M

Given eigenvectors &1, ..., & corresponding to eigenvalue A1, we need to show that for any x € R™ is not in
the span of {&1, ..., £}, Rayleigh quotient R (z) < A;.

Given Equation for x 20and Rayleigh quotient for a vector is R4(x) 19, for x not in span of {&1,...,E},
there exists some &; with j > k such that (€] x) # 0:

P& @)

o) = = er)2

As)\p is largest eigenvalue for i > k, \; < Aq:

_ Ef:1)‘1(giTm)2 + Z;L:k+1)‘i(€iTx)2
(S, (& x)?

Ra(z)
Focusing on the numerator of the equation:
Zf:l/\l(giTx)Z = 2?:k+1)\i(5¢T$)2
Since for A\; < A1, the difference is positive:
S (= A)(E2)? >0
With the denominator of R4 (z) still the same, the Rayleigh quotient is less than 1 because numerator is less
than the denominator due to contribution from ¢ > k. Thus, for x not in span of &1, ..., &, Ra(x) < Aq.

Appendix

Images & Graphs
1) Learned Probability Vector Images at each run for each component k={2,3,4,7,10}

The code runs EM algorithm for the specified number of mixture components K and then visualizes each
component as an 8 x 8 grayscale image after each run.

42

Component 1

Component 1

[

Component

Ly

Component 1

)

Component 1

A

Component 2

Component 2

Component 2

Component 2

Component 2

Figure 24: Learned probability vectors as images for k = 2, each run 5 times

43

Component 1

Component 1

.

Component 1

)

Component 1

o

Component 1

Figure 25:

Component 2

o

Component 2

Component 2

Component 2

Component 2

Learned probability vectors as images for k = 3, each run 5 times

Component 3

Component 3

Component 3

Component 3

Component 3

e,

Component 1

Component 1

Component 1

Component 1

Component 1

Figure 26:

Component 2

Component 2

Component 2

Component 2

ol

Component 2

.

45

Component 3

Component 3

Component 3

hoh

Component 3

Component 3

Learned probability vectors as images for k = 4, each run 5 times

Component 4

o

Component 4

e,

Component 4

L

Component 4

Component 4

Component 1 Component 2 Component 3 Component 4 Component 5 Component & Component 7

L

Component 1 Component 2 Companent 3 Component 4 Component 5 Component &

r

Compaoneant 7

.
Ly
ol

B

o

Component 1 Component 2 Compaonent 4 Companent 5 Compaoneant & Componant 7

Compaonent 3

o
o
=
Ly

Component 1 Component 2 Companent 3 Companent 4 Companent 5 Companent & Component 7

L)

s} Y

o
&
LK

X

Component 1 Component

Component 3

Component 4 Component 5 Component & Component 7

W

- .

Figure 27: Learned probability vectors as images for k = 7, each run 5 times

46

Component 1 Component 2 Component 3 Component 4 Component 5 Component & Component 7 Companent 8 Component 9 Component 10

A PRI AL S A

Component 1 Component 2 Componeant 3 Component 4 Component 5 Compaonent & Component Component 8 Component 9 Compaonent 10

s | BRI S

Compaonent 1 Component 2 Component 3 Component 4 Component 5 Companent & Component 7 Companent 8 Component 9 Companent 10

S Ll e I P e e 1 B

Component 1 Component 2 Component 3 Component 4 Component 5 Companent & Component 7 Companent & Component 9
& I E B ds & n u i
Component 1 Componant 2 Componant 3 Componant 4 Componant 5 Component & Componeant 7 Companent 8 Component 9 Companent 10
“ n J ot il el . ‘ I ‘ n j

Figure 28: Learned probability vectors as images for k = 10, each run 5 times

Companent 10

Cluster 1 Mean

Cluster 2 Mean

Cluster 3 Mean

Cluster 4 Mean Cluster 5 Mean

Cluster 7 Mean Cluster 8 M
Cluster 6 Mean el Cluster 9 Mean Cluster 10 Mean

Figure 29: Cluster Mean for k={2,3,4,7,10}

47

2) Running toyexample.data with larger number of iterations n__iter = 2000

Log Likelihood of Training Set split in ToyExample.data with GibbsSampler
-260
-280
-300

loglike

=320

-340 :
— train

-360
0 1000 2000

iteration

Log Likelihood gETest Set split in ToyExample.data with GibbsSampler

— test

0 1000 2000
iteration

Figure 30: Training and test set from ToyExample.data Log-likelihood over 2000 iterations with Standard
Gibbs Sampler to reduce noise

48

Log Likelihood of Training Set split in ToyExample.data with Collapsed Gibbs Sampler
-260
-280
-300

loglike

=320

-340
—— train

-360
0 1000 2000

iteration

Log Likelihood of Tes:§288t split in ToyExample.data with Collapsed Gibbs Sampler

— test

0 1000 2000
iteration

Figure 31: Training and test set from ToyExample.data Log-likelihood over 2000 iterations with Collapsed
Gibbs Sampler to reduce noise

Code Execution
All code is implemented in Python through Jupyter Notebook.

49

Question 1: Code

In [1:|#1d)

In [41]: def main():
load the data set
Y = np.loadtxt{'binarydigits.txt'}
N, D = Y.shape

Compute the ML parameters for the Bernoulll aistributiomn

The ML estimate for the probability p_d of pixel d being 1 is the proportion of images
where pixel d is 1.

p_ml = np.mean(¥, axis=8)

ml_image = np.reshapelp_ml, (&, &)}

#Ex8 image

fig, ax = plt.subplotsi)

cax = ax.matshow(ml_image, interpolation="Mone", cmap='gray')
fig.colorbar(cax, label="Probability")

demote probability in teh pixel
for 1 in range(ml_image.shape[8]):
for j in range(ml_image.shape[1]):
ax.text(j, 1, f'{ml_image[i, jl:.2f}"', va='center', ha='center', color='red')

plt.title("ML Estimates as #x8 Image")
plt.axis{'aff"')
plt.show()

if _ name__ == "_ _main_ ":
main{)

ML Estimates as 8x8 Image

0.64 0.77 0.69

064 072 070 079

Probability

0.60 0.59

.0.65 0.76 0.77

Figure 32: Learned probability vectors as images for k = {2,3,4,7,10}, each run 5 times

50

In []: | #1e)

In [3]:|def compute_map_parameters(Y, alpha, beta):
MAP estimate
N, D = Y.shape
sum_pixels = np.sum(Y, axis=@8)
map_prebabilities = (alpha-1 + sum_pixels) / (N + alpha + beta - 2)
return map_probabilities

def mainf{):
load the data set
Y = np.loadtxt('binarydigits.txt'}
N, D = Y.shape

Compute the MAP parameters for the Bernoulli distribution
alpha, beta = 3, 3

map_parameters= compute_map_parameters(Y, alpha, beta)

Reshape the MAP parameters for display
map_image = np.reshapeimap_parameters, (8, 8))

Display the MAP parameters as an 8x8 image
fig, ax = plt.subplotsi})
cax = ax.matshow(map_image, interpolation="None", cmap='gray')

Add colorbar to show the probability scale
fig.colorbar(cax, label="Probability")

Loop over data dimensions and create text annotations.
for i in range(map_image.shape[@8]):
for j in range(map_image.shape([1]):
ax.text(j, i, '{map_image[i, j]:.2f}', va='center', ha="center',6 coler='red')

plt.title{"MAP Estimates as Bx8 Image")
plt.axis('off')
plt.shew()

if __name__ == "__main_ ":
maing)

MAP Estimates as 8x8 Image

063 | 0.76 068

063 071 069 078

(=]
I
Probability

0.60 0.59
.0,65 0.75 0.76

Figure 33: Learned probability vectors as images for k = {2,3,4,7,10}, each run 5 times

ol

Question 2: Code

In [1:|#2a,b,c calculating the posterior probabilities of each of the three models generated the data in binarydigits.txt

In [98]: | from scipy.special import betaln
def log_model_a_likelihood(N, D):
#log likelihood 1s simply ND * leg(@.5).
return M * D * np.log(@.5)

de

-

leg_model_b_Llikelihood(Y):

integrate over the possible valwes of p_d, which are all the same for each pixel.
N, D = Y.shape

sum_pixels = np.sumiY)

log_likelihood = betaln(sum_pixels + 1, N+D - sum_pixels + 1} - D = betaln{1l, 1}
return Llog_likelihood

de

-

leg_model_c_Llikelihood(Y):

calculate the sum of log probabilities for Individual pixels.

N, D = Y.shape

sum_pixels = np.sumlY, axis=8)

log_likelihoods = [betaln{sum_pixels[d] + 1, N = sum_pixels[d] + 1) = betaln{1l, 1} for d in rangeiD)}]
return np.sum(log_likelihoods)

Calculate the size of the dataset
N, D = ¥.shape

Calculate the log likelihood of each model
log_likelihood_a = log_model_a_likelihood{M, D}
log_likelihood_b = log_model_b_likelihood(Y)
log_Llikeliheod_c = log_model_c_likelihood{(Y)

log_likeliheod_a, log_likelihoed_b, leg_likelihood_c
ODut[98]: (-4436.14195558365, -4283.721342577359, -3851.1957439211315)

In [99]: | def calculate_posterior_probabilities(Y):
N, D = Y.shape
Calculate the log likelihood of each model.
leg_likeliheod_a log_model_a_ likelihood(N, D)
leg_likelihood_b = Llog_model_b_likelihood(Y)
leg_likeliheod_c¢ = Llog_model_c_likelihood(¥)

Compute the log of the sum of exponentiated log likelihoods for normalization.
leg_total_likelihood = np.legaddexp(log_likelihood_a, np.logaddexp(log_likeliheed_b, log_likelihood_c))

Convert log likelihoods te probabilities.

probability_a = np.exp(leg_likelihood_a - log_total_likelihood)
probability_b = np.exp(leg_likelihood_b - log_total_likelihood)
probability_c = np.exp(leg_likelihood_c - log_total_likelihood)

return probability_a, probability_b, probability c

¥ = load_data()
posterior_probabilities = calculate_posterior_probabilities(Y)
print{f"Poesterior probabilities:\nModel 1: {posterior_probabilities[8]}\nModel 2: {posterior_probabilities[1]}

“nModel 3: {posterior_probabilities[2]}")

Posterior probabilities:

Model 1: 9.142986210361563e-255
Model 2: 1.4339011785434019e-188
Model 3: 1.8

Figure 34: Learned probability vectors as images for k = {2,3,4,7,10}, each run 5 times

52

Question 3: Code

In []: #Question 3d)

In [29]: | def em_algorithm(K, X, max_iter=18@, tol=le-6, epsilon=le-8):
EM algerithm for a mixture of K multivariate Bernoullis, adjusted to the given solutions.

K: Number of mixture components

X: Data matrix (MxD)

max_iter: Maximum number of iterations

tol: Telerance for log-likelihood convergence

epsilon: Small constant to avoid numerical issues

N, D = X.shape # Number of samples and dimensionality

pl = np.full(K, 1/K) # Mixing proportions, initialized uniformly

P = np.random.rand(K, D) # Bernoulll parameters, initialized randomly
leg_likelihoods = [1 # Track leg-likelihood values at different iterations

for iteration inm range(max_iter):
E-step and responsibilities
leg_r_nk = np.log(pi + epsilon) + \
{X @ np.logi{P.T + epsilon)) + %
{{1 - X) @ np.leg(1 - P.T + epsilon))
leg_r_nk -= Llog_r_nk.max({axis=1, keepdims=True)
r_nk = np.exp{log_r_nk)
r_nk /= r_nk.sum{axis=1, keepdims=True) #Normalize responsibilities

M-step
P = {r_nk.T @ X) / r_nk.sum{axis=a)[:, np.newaxis]
pl = r_nk.sum{axis=8) / N

Log-likelihood

log_likelihood = np.sum(
[r_nkln, k]l = (np.leg{pilk] + epsilon) +
np.sum{X[n, :] = np.log(P[k, :] + epsilon) +
{1 = x[m, :1) = np.leg(1l = Plk, :]1 + epsilen}))
for n in range(N) for k in range(K)]

)

leg_likelihoods.appendileg_likelihood)

Check for convergence
if iteration > @ and np.abs({log_likelihoods[=1] = log_likelihoods[-2]) = tol:
break

return pi, P, log_likelihoods

X = np.loadtxt('binarydigits.txt')
K_values = [2, 3, 4, 7, 18]

results = {}

for K in K_values:

pl, P, log_likelihoods = em_algerithm(K, X)
results[K] = {
'‘pi': pi,

: F
"leg_1 ;.kel ihoods®*: log_likelihoods
+
plt.plot{log_likelihoods, label=f'K={K}')

plt.title('Log Likelihoods over Iterations for Different Values of K')
plt.xlabel('Iteration’)

plt.ylabel('Log Likelihood')

plt. legend()

plt.show()
Log Likelihoods over Iterations for Different Values of K
-2400
—_— k=2
— k=3
—=2600 — K=4
—_— k=T
— K=10
—2800 -
=
[=]
o
£ -3000
2
-1
=]
5 -3200
3400 -
_3600 | //-r
r T v T T v v . r
Q 5 10 15 20 25 30 35 40

Iteration

Figure 35: Learned probability vectors as images for k = {2,3,4,7,10}, each run 5 times

53

In []:

In [18]:

#3e)

Define the K values and the number of times fo run the algorithm
K_values = [2, 3, 4, 7, 18]

num_runs = 5 # Number of runs with different initial cenditions
Store the results for analysis

results = {K: [] for K in K_values}

Run the EM algorithm multiple times for each K and store the results
for K in K_values:
for run in range(num_runs):
pi, P, log_likelihoods = em_algorithm(K, X)
results [K].append((pi, P, log_likelihoods))
print{f'Run {run+l} for K={K} completed.')

Example code to visualize one set of learned probability vectors as images
for K in K_values:
pi, P, log_likelihoods = results([K][8] # Take the first run for example
fig, axs = plt.subpletsi(l, K, figsize=(2@, 2))
for k in range(K):
axs [k].imshow(P[k] . reshape{&, 8), cmap="gray') # Replace with actual dimensions
axs[k].axis('off')
axs [k].set_title(f'Component {k+1}')

plt.show()
Run 1 for K=2 completed.
Run 2 for K=2 completed.
Run 3 for K=2 completed.
Run 4 for K=2 completed.
Run 5 for K=2 completed.
Run 1 for K=3 completed.
Run 2 for K=3 completed.
Run 3 for K=3 completed.
Run 4 for K=3 completed.
Run 5 for K=3 completed.
Run 1 for K=4 completed.
Run 2 for K=4 completed.
Run 3 for K=4 completed.
Run 4 for K=4 completed.
Run 5 for K=4 completed.
Run 1 for K=7 completed.
Run 2 for K=7 completed.
Run 3 for K=7 completed.
Run 4 for K=7 completed.
Run 5 for K=7 completed.
Bun 1 for K=18 completed.
Run 2 for K=18 completed.
Bun 3 for K=18 completed.
Bun 4 for K=18 completed.
5

for K=18 completed.

Component 1 Component 2

Companent 1 Component 2 Component 3
|

Component 1 Component 2 Component 3

COmponent 4

Componeri 1 Component 2 Companent 3 Component 4 Component 5 Companent & Component 7
: h
ﬁ H B o = -‘ h .

Component 1 Component 2 Caomponent 3 Commpanest 4 Companerit % Companenl & Camponent 7 Component 8 Companent 9 Component 10

CAS]S] FEASIEd 7

Figure 36: Learned probability vectors as imjges for k ={2,3,4,7,10}, each run 5 times
5

In [5]: fer K in K_values:
for run in range{num_runs):
pi, P, log_likelihoods = em_algorithm(K, X)
print{f'Run {run+l} for K={K} completed.')

Viswalize the learned probability vectors as images for each run
fig, axs = plt.subplotsil, K, figsize=(28, 2))
for k in range(K):
axs[k].imshow(P[k]. reshape(&, &), cmap='gray')
axs[k].axis("off")
axs[k].set_title(f'Component {k+1}, Run {run+1}'}
plt.show()

Figure 37: Code written for Learned Probability Vector Images at each run for each component
k={2,3,4,7,10}

In [1: #3e) responsiblities

In [13]: from scipy.special import logsumexp
def compute_responsibilities(Y, pi, P):
N, D = Y.shape
K = len(pi)

Log-likelihood for each data point under each component
log_likelihood = np.dot(Y, np.log(P.T + le-1@)) + np.dot(1l - Y, np.log(l - P.T + 1le-10))
log_resp_unnorm = log_likelihood + np.log(pi + le-1@)

Log-sum—exp for normalization (log-sum across mixture components)
log_resp_norm = logsumexp(log_resp_unnorm, axis=1, keepdims=True)
log_resp = log_resp_unnorm - log_resp_norm

responsibilities = np.exp(log_resp)

return responsibilities
def load_data(file_path):
N = 100 # Assuming 108 images
return np.random.binomial(n=1, p=0.5, size=(N, D))

Y
D

load_data('binarydigits.txt')
Y.shape[l] # Number of pixels (or dimensions)

Different values of K to compute responsibilities for
K_values = [2, 3, 4, 7, 18]
Dictionary to hold responsibilities for different K values
responsibilities_for_K = {}
for K in K_values:
Random mixing proportions and Bernoulli parameter matrix for each K
pi = np.random.dirichlet(alpha=np.ones(K), size=1)[@]
P = np.random.beta(a=2, b=2, size=(K, D))

Compute the responsibilities for this K
R = compute_responsibilities(Y, pi, P}

Store the responsibilities in the dictionary
responsibilities_for K[K] = R

Displaying the first 5 responsibilities for each K value
for K, R in responsibilities_for_K.items():
print(f"Responsibilities for K={K}:\n{R[:5]}\n")

Responsibilities for K=2:

Figure 38: Code written computing responsibilities 7, where k={2,3,4,7,10}

95

In []: #3f) Express log likelihoods obtained in bits and relate the numbers to teh length of naive encoding of these binary

In []: #Code written again in another jupyter notebook as it was a long notebook for Q1-3

In [2]: import os
import subprocess

def log_likelihood_to_bits(log_likelihood):
return log_likelihood / np.log(2)

def naive_encoding_length(N, D):
return N * D

def save_binary_data_to_file(X, file_path):
Save the binary data for compression
with open(file_path, 'wb') as f:
for row in X:
byte = int(''.join(row.astype(str)), 2).to_bytes({len(row) + 7) // 8, byteorder='big')
f.write(byte)

def compress_file(file_path):
Compress the file with gzip
compressed_file_path = file_path + '.gz'
subprocess.run(['gzip', '-k', file_path])
return compressed_file_path

def get_compressed_size(compressed_file_path):
Calculate the size of the compressed file
return os.path.getsize(compressed_file_path) * 8

Load your data

X = np.loadtxt('binarydigits.txt")

N, D = X.shape

K = 3 #example for mixture components

Run the EM algorithm , defined previously

pi, P, log_likelihoods = em_algorithm(K, X)

log_likelihood = log_likelihoods[-1]

log_likelihood_bits = log_likelihood_to_bits(log_likelihood)
naive_length = naive_encoding_length(N, D)

Save the binary data to a file

binary_data_file_path = 'binary_data.bin'

Threshold probabilities to get binary values

X_binary = (X >= 0.5).astype(int)

Now save this binary data to a file
save_binary_data_to_file(X_binary, binary_data_file_path)

Compress the file
compressed_file_path = compress_file(binary_data_file_path)

Calculate compressed size
compressed_size = get_compressed_size(compressed_file_path)

print(f'Log-likelihood in bits: {log_likelihood_bits}')
print(f'Naive encoding length: {naive_length} bits')
print(f'Compressed size: {compressed_size} bits')
—bs.remuve(compressed_file_path)

Log-likelihood in bits: -4451.9561279511945
Naive encoding length: 640@ bits
Compressed size: 5544 bits

Figure 39: Code written computing size of gzip compressed file and naive encoding length file and log-
likelihood

56

In [1: |#3g)

In [8]: def encode_model_parameters{pi, P, epsilon=1e-18):
Clip P to avoid taking the log of @ or 1
P_clipped = np.clip(P, epsilon, 1 - epsilon)

#avoiding log(@) by clipping
pi_clipped = np.clip(pi, epsilon, 1 - epsilen)
pi_bits = np.sum(-np.log2(pi_clipped)) # The negative sign is for the encoding length calculation

Encoding the Bernoulli parameters

The expected encoding length is calculated by multiplying the probability by the encoding length
P_bits_positive = P_clipped * -np.log2(P_clipped) # Encoding length for p

P_bits_negative = (1 - P_clipped) * -np.log2(1 - P_clipped) # Encoding length for I-p

P_bits = np.sum({P_bits_positive + P_bits_negative) # Sum of expected encoding lengths

return pi_bits + P_bits

def calculate_total_encoding_cost(pi, P, log_likelihood_bits):
model_parameters_bits = encode_model_parameters(pi, P}
total_cost_bits = model_parameters_bits + abs(log_likelihood_bits)
return total_cost_bits

Define K values to test
K_values = [2, 3, 4, 7, 18]

for K in K_values:
pi, P, log_likelihoods = em_algorithm(K, X)
log_likelihood_bits = log_likelihood_to_bits(log_likelihoods[-1])
total_cost = calculate_total_encoding_cost(pi, P, log_likelihood_bits)

print(f"Total encoding cost for K={K}: {total_cost} bits")

binary_data_file_path = 'binary_data_3g.bin’

X_binary = (X == 8.5).astype(int)
save_binary_data_to_file(X_binary, binary_data_file_path)
compressed_file_path = compress_file(binary_data_file_path)
compressed_size = get_compressed_size(compressed_file_path)
print(f"Compressed size with gzip: {compressed_size} bits")

#remove file
os.remove(binary_data_file_path)
os.remove(compressed_file_path)

Total encoding cost for K=2: 5871.465585855384 bits
Total encoding cost for K=3: 4731.944110666028 bits
Total encoding cost for K=4: 4730.116360773389 bits
Total encoding cost for K=7: 4827.482362866893 bits
Total encoding cost for K=1@0: 3780.08353598176@4 bits
Compressed size with gzip: 5568 bits

Figure 40: Code written ccomputing total encoding costs with increasing k components where k={2,3,4,7,10}

57

Question 4: Code

In [1: #g4a

In [64]: def log_determinant(A):
return 2 * np.sum{np.log(np.diag(np.linalg.cholesky(A)}))

X_train = np.loadtxt('ssm_spins.txt'}).T # Transposed for column vector
Define the parameters
A = 0.99 * np.array([[np.cos(2*np.pi /18@), -np.sin(2%np.pi/18@), @, @],
[np.sin{2#*np.pi/180}), ©.99, @, @1,
[@, @, np.cos(2np.pi/9@), -np.sin(2Z*np.pi/9@}]1,
[@, @, np.sin(2*np.pi/9@), np.cos{2+np.pi/98)1])
Q0 = np.eye(4)- A@A.T

C = np.array([[1, 8, 1, 8],
e, 1, @, 11,
[1, e, @, 11,
e, o, 1, 11,
[6.5, 8.5, 8.5, 8.511)

R = np.eye(5)

Y@ = np.zeros(4)

08 = np.eye(4)

#00 = np.eye(d4) - A_8 @ A_B.T this also works im just stupid

Run Kalman filter

¥_filt, V_filt, _, _ = run_ssm_kalman(X_train, Y@, 0@, A, Q, C, R, mode="filt")

Plotting for Kalman filter
plt.title('Estimated States from Kalman Filter')
plt.xlabel{ 'Time')

plt.ylabel('State Estimates')

plt.plot(Y_filt.T)

plt.show()

plt.plot([logdet(v) for v in V_filtl)

plt.title('Uncertainty of estimate at each timepoint for Kalman Filter')
plt.ylabel('Log Determinant of Error Covariance')

plt.xlabel{ 'Time')

plt.show()

Run Kalman smoother
¥_smooth, V_smooth, _, _ = run_ssm_kalman(X_train, Y@, 08, A, Q, C, R, mode='smooth')

#estimated states from Kalman smoother
plt.title('Estimated States from Kalman smoother')
plt.xlabel{ 'Time')

plt.ylabel('State Estimates')

plt.plot(Y_smooth.T)

plt.show()

#Plotting the log-determinant of the covariance matrices from Kalman smoother
plt.plot([logdet(v) for v in V_smooth])

plt.title('Uncertainty of estimate at each timepoint for Kalman Smoother')
plt.ylabel('Log Determinant of Error Covariance')

plt.xlabel{ 'Time')

plt.show()

Figure 41: Code written plotting the Kalman Filtering and Smoothing plots in Q4a

o8

In [1: #4bi)

In [79]: def em_ssm(X, iterations=5@, tol=le-4):
d, T = X.shape
k = 4 # Dimension of the latent space

Define the parameters

A = 0.99 % np.array{[[np.cos(2#np.pi /188), -np.sin{2#np.pi/180), @, @],
[np.sin(2+np.pi/18@), ©.99, @, @],
[@, @, np.cos(2#np.pi/98), -np.sin(2«np.pi/o0}],
[8, 8, np.sin{2#np.pi/98), np.cos{Z=np.pi/98)11)

Q = np.eye(4)- AEA.T

C = np.array([[1, &, 1, 0],
e, 1, o, 11,
[1, &, &, 11,
[a, &, 1, 11,
la.5, 0.5, 0.5, 8.511)

R = np.eye(5)
y_init = np.zeros(4)
Q_init = np.eye(4)

log_likelihood_history = [

for iteration in range(iterations):
E-step: Run Kalman smoother with current parameters
y_smooth, V_smooth, V_joint, likelihood = run_ssm_kalman(X, y_init, 0Q_init, A, Q, C, R, mode="smooth')
log_likelihood = np.sum(likelihood)
log_likelihood_history.append(log_Llikelihood)

M-step: Update parameters A, €, @, R based on eguations from lecture notes and assignment

Sum_yy = np.sum([y_smooth[:,t:t+1] @ y_smooth[:,t:t+1].T for t in range(T)}], axis=@8) + np.sum(V_smooth, axis
Sum_yy_lag = np.sum([y_smocth[:,t:t+1] @ y_smooth[:,t-1:t].T for t in range(l, T)], axis=@) + np.sum(V_joint
Sum_xx = np.sum([X[:,t:t+1] @ X[:,t:t+1].T for t in range(T)}], axis=@)

Sum_xy = np.sum([X[:,t:t+1] @ y_smooth[:,t:t+1].T for t in range(T)}], axis=@)
#C

C_new = Sum_xy @ np.linalg.inv{Sum_yy)

ﬁ_ﬁe’n = (Sum_xx - Sum_xy @ C_new.T) / T

i_ﬁew = Sum_yy_lag @ np.linalg.inv(Sum_yy - V_smooth[@])

#0Q

Q_new = (Sum_yy - Sum_yy_lag @ A_new.T) / (T - 1)

A, C, 0, R = A_new, C_new, Q_new, R_new

Convergence

if iteration > @ and np.abs(log_likelihood_history[-1] - log_likelihood_history[-2]) < tol:
break

return A, C, Q, R, log_likeliheod_histary

Load data and run EM algorithm
X_train = np.leadtxt{'ssm_spins.txt').T
A_learned, C_learned, Q_learned, R_learned, log_likelihood_history = em_ssm{X_train)

Plot log-likelihood history
plt.plot{log_likelihood_history)
plt.title('Log Likelihood vs Iterations')
plt.xlabel('Iterations")

plt.ylabel{'Log Likelihood')

plt.show()

Figure 42: Code written computing loglikelihood under true parameters, with EM algorithm for 50 iterations,
adapted by changing X train with X test (code omitted as it was just changing X train attribute to
X _test)

99

In [71]: def run_em_ssm(X, iterations=58, tol=le-4, random_init=False):
d, T = X.shape
k =4 # Dimension of the latent space (assumed)

Initialize parameters
if random_imit:
Random initial parameter guesses for 18 random choices

A = np.random.rand(k, k)
C = np.random.rand(d, k)
Q = np.eyelk) # (1 + np.random.rand(k, k})
R = np.eye({d) # (1 + np.random.rand(d, d))
else:
Initial parameter guesses based on the provided image
A = 8.99 % np.arrayl[[np.cos(2+np.pi /18@), -np.sin(2#np.pi/188), @, @1,

[np.sin{2#np.pi/180), @.99, @, @l,
[@, @, np.cos(2+np.pi/9@), -np.sin(2#np.pi/o98)],
[@, @, np.sin{Z*np.pi/9@), np.cos(2*np.pi/90)11)
C = np.array([[1, @&, 1, @],
[e, 1, @, 11,
1, @, @, 1],
[e, 1, 1, 1],
[0.5, @.5, @.5, 8.511)
0 = np.eyelk)
R = np.eye(d)

y_init = np.zeros(k)
Q_init = np.eye(k)

log_likelihood_history = []

for iteration in range(iterations):
E-step:
y_smooth, W_smooth, V_joint, likeliheod = run_ssm_kalman(X, y_init, Q_init, A, Q, C, R, mode='smooth')
log_likelihood = np.sum(likelihood)
log_likelihood_history.append(log_likelihood)

M-step: Update parameters A, C, @, R

Calculate the necessary sums for the updates

Sum_yy = np.sum{ [y_smooth[:,t:t+1] @ y_smooth[:,t:t+1].T for t in range{T)], axis=0) + np.sum(V_smooth, axis
Sum_yy_lag = np.sum([y_smooth[:,t:t+1] @ y_smooth[:,t-1:t].T for t in range(1l, T)], axis=@8) + np.sum(V¥_joint
Sum_xx = np.sum([X[:,t:t+1] @ X[:,t:t+1].T for t in range(T}], axis=@)

Sum_xy = np.sum{ [X[:,t:t+1] @ y_smooth[:,t:t+1].T for t in range(T)], axis=@)

Update C

C_new = Sum_xy @ np.linalg.inv(Sum_yy)

Update R

R_new = (Sum_xx - Sum_xy @ C_new.T) / T

Update A

A_new = Sum_yy_lag @ np.linalg.inv(Sum_yy - V_smooth[@])
Update Q

Q_new = (Sum_yy - Sum_yy_lag @ A_new.T) / (T - 1)

Assign the new parameters for the next iteration
A, C, 0, R = A_new, C_new, Q_new, R_new

if iteration > @ and np.abs({leg_likelihood_history[-1] - log_likelihood_history[-2]) < tol:
break

return A, C, 0, R, log_likelihood_histary

X_train = np.loadtxt('ssm_spins.txt').T
plt.figure(figsize=(1@, &)}

Run with given initial parameters
A, C, Q, R, log_likelihood_history = run_em_ssm(X_train)
plt.plot({log_likelihood_history, label='Initial parameters')

Run EM algorithm with 18 random initializations

for i in range(1@):
A, C, 0, R, log_likelihood_history = run_em_ssm{X_train, random_init=True)
plt.plot{log_likelihood_history, label=f'Random Choice {i#1}')

plt.title('Log Likelihood over SP iterations')
plt.xlabel('EM Iterations")

plt.grid(True)

plt.ylabel('Log Likelihood'})

plt.legend()

plt.show()

Log Likelihood over 50 iterations

Figure 43: Code written computing loglikelihood under with 10 random choice generations for 50 and 100
iterations, number of iterations manually changed in the code, and also adapted by changing X train with
X test (code omitted as it was just changing X train attribute to X _test)

60

Question 5: Code

In []:

#5a)

In [2]:

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd

with open('message.txt', 'r') as file:
encrypted_message = file.read()

with open('symbols.txt', 'r') as file:
symbol_list = file.read().splitlines()

Process the War and Peace text
def process_text(file_path, replace_chars, replacement, replace_spaces):
with open(file_path, 'r') as file:
text = file.read().lower()
for orig_char, repl_char in zip(replace_chars, replacement):
text = text.replace(orig_char, repl_char)
for space_char in replace_spaces:
text = text.replace(space_char, ' ')
return text

calculate transition matrix
def calculate_transition_matrix(text, symbols):
matrix_size = len(symbols)
transition_matrix = np.zeros({(matrix_size, matrix_size), dtype=int)

for char_index in range(1l, len(text)):
if text[char_index] in symbols and text[char_index-1] in symbols:
i = symbols.index(text[char_index-1])
j = symbols.index(text[char_index])
transition_matrix[i, j] += 1
#normalize rows to compute transition probabilities
row_sums = transition_matrix.sum(axis=1)
probability_matrix = transition_matrix / row_sums[:, np.newaxis]
probability_matrix[np.isnan(probability_matrix)] = @
return probability_matrix

Characters to replace with a space
charracters_to_replace = ['\n', ‘'\r', "!', "2, ',', .Y, ity it
spaces_to_replace = ['_', '=', '(', "', '[', "1, '{', '}']

war_and_peace_text = process_text('warpeace.txt', characters_to_replace, ' ', spaces_to_replace)
transition_probs = calculate_transition_matrix(war_and_peace_text, symbol_list)

plot

plt.figure(figsize=(14, 14))

sns.heatmap(pd.DataFrame(transition_probs, index=symbol_list, columns=symbol_list), annot=False, cmap='YlGnBu')
plt.title('Symbol Transition Heatmap')

plt.savefig('transition_heatmap.jpg', dpi=300)

plt.show()

/var/folders/bt/n98c3tql553d6866b0A1_z_400000gn/T/ipykernel_1203/1124478417.py:36: RuntimeWarning: invalid value enc
ountered in divide

probability_matrix = transition_matrix / row_sums[:, np.newaxis]

Symbol Transition Heatmap

- . Lo

Figure 44: Code written plotting the Symbol Transition Map in Qba

61

In []: | #estimate stationary distribution

In [3]: # Calculate the stationary distribution
eigenvalues, eigenvectors = np.linalg.eig(transition_probs.T) # Note the transpose of the transition matrix
stationary_distribution = np.abs(eigenvectors([:, np.isclose(eigenvalues, 1)].flatten().real)
stationary_distribution /= stationary_distribution.sum() # Normalize to sum to 1

Visualize the stationary distribution

plt.figure(figsize=(14, 5))

sns.barplot(x=symbol_list, y=stationary_distribution)
plt.title{'Stationary Distribution of Symbols')
plt.ylabel('Probability"')

plt.xticks(rotation=90) # Rotate the x labels for better readability
plt.savefig('stationary_distribution.jpg', dpi=30@, bbox_inches='tight')
plt.show()

/Users/anabelyong/miniconda3/envs/s1/1ib/python3.11/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categ
orical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead
if pd.api.types.is_categorical_dtype(vector):
/Users/anabelyong/miniconda3/envs/s1/1ib/python3.11/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categ
orical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead
if pd.api.types.is_categorical_dtype(vector):
/Users/anabelyong/miniconda3/envs/s1/1ib/python3.11/site-packages/seaborn/_oldcore.py:1765: FutureWarning: unique w
ith argument that is not not a Series, Index, ExtensionArray, or np.ndarray is deprecated and will raise in a futur
e version.
order = pd.unique(vector)
/Users/anabelyong/miniconda3/envs/s1/1lib/python3.11/site-packages/seaborn/_oldcore.py:1498: FutureWarning: is_categ
orical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead
if pd.api.types.is_categorical_dtype(vector):

Stationary Distribution of Symbaols

0.175 4

0.150

0.125

0.100 -

Probability

0.075 4

0.050 1

0.025

0,000|||r|||1r-||\||\|

Figure 45: Code written computing stationary distribution for all the symbols for 5a) from mathematical
derivation in assignment 5a)

62

In []: #metropolis hastings algorithm 5d)

In [33]: import random
import math
from collections import Counter

def generate_sig(sig):
signew = sig[:]
swapl, swap2 = random.sample(range(len(sig)), 2)
signew([swapll, signewl[swap2] = signewl[swap2], signew([swapl]
return signew

def get_logscore(message, sigma, T, symbol_to_index):
ss =@
for 1 in range(len(message) - 1):
if messageli] in symbol_to_index and messagel[i + 1] in symbol_to_index:

si = symbol _to_index[message[i]]
sj = symbol_to_index[message[i + 1]]
mapped_si = symbol_to_index[sigmalsi]]
mapped_s] = symbol_to_index[sigmalsj]]
ss += math. log(T[mapped_si, mapped_sjl)

return ss

Function to update the transition matrix with text
def update_transition_matrix(T, text, symbol_to_index, add_symbol_index):
for 1 in range(len(text) - 1):
first_char_index = symbol to_index.get(text[i], add_symbol index)
second_char_index = symbol_to_index.get(text[i + 1], add_symbol_index)
T[first_char_index, second_char_index] += 1
return T

Load symbols and war and peace text
with open(’symbols.txt’, 'r') as f:
symbols = f.read().splitlines()

with open{’warpeace.txt', 'r') as f:
war_and_peace_text = f.read().replace('\n", '')

Create symbol to index mapping
symbol_to_index = {symbol: index fer index, symbol in enumerate(symbols)}
add_symbol_index = len{symbols) # Index for any character not in the symbols list

Initialization of the transition matrix with an additional row and column
len(symbols)
np.ones((S + 1, S + 1))

=

Update the transition matrix with war and peace text
= update_transition_matrix(T, war_and_peace_text, symbol_te_index, add_symbol_index)
= T[:S, :5] # Ignore the additional row and column

——

i

Normalize the transition matrix to ensure the rows sum to 1
Tnorm = T / T.sum(axis=1, keepdims=True)
Tnorminp.isnan(Tnerm)] = @ # code ran with NaN results first try/ Replace NaNs resulted from division by zero!

Calculate the stationary distribution

eigenvalues, eigenvectors = np.linalg.eig(Tnorm.T)

stationary_distribution = np.abs(eigenvectors[:, np.isclose(eigenvalues, 1)].flatten().real)
stationary_distribution /= statieonary_distribution.sum()

#encrypted message
with open('message.txt', 'r') as file:
message = file.read().strip()

Initialize the mappings based on frequency intuition
sig_mapping = list(symbols)

frequency = Counter(message)

most_common = frequency.most_common(2)

space_char, e_char = most_common[@] [8], most_common(1] [B]

Assign ' ' to the most common character and 'e' to the second most common
space_index_in_sig = sig_mapping.index(' ')

e_index_in_sig = sig_mapping.index(‘e")

space_index_in_symbols = symbols.index(space_char)

e_index_in_symbols = symbols.index(e_char)

sig_mapping[space_index_in_sigl, sig_mapping[space_index_in_symbols] = space_char,
sig_mappingle_index_in_sigl, sig_mappingle_index_in_symbols] = e_char, 'e’

Run metropolis hastings algorithm (first try)
iterations = lo@eoe
symbol_to_index = {symbol: idx for idx, symbol in enumerate(symbols)}
for 1 in range(1, iteratiens + 1):
signew = generate_sig(sig_mapping)
1s_sig = get_logscore(message, sig_mapping, Tnorm, symbol_to_index)
1s_signew = get_logscore(message, signew, Tnorm, symbol_to_index)
accept = math.exp(ls_signew - ls_sig)
if random.random() <= min({accept, 1?:
sig_mapping = signew

if 1 % 100 == @:
Decode the message
message_d = ''.join{sig_mapping[symbol_teo_index[k]] if k in symbol_to_index else k for k in message)

print(f'Iteration {i}: {message_d[:6@]}")

Iteration 18@: g: Ul (mr:lei wi. lmie Irj:eiwn;e (ewif 1("wstei !wle le fm
Iteration 200: au lc cmrudei wu. Imie jriueiwn?e cewif lc pwstei dwje le fm
Ttaratian @8 an 1k kmfuden wie Tmne if7uenun?e kewni Tk nwsten dwie la im

Figure 46: Code written for Metropolis Hastings algorithm implementation

63

1

[34]1:

raise NotUneValueround(Expected one value, tound @)
executing.executing.NotOneValueFound: Expected one value, found @

count most frequent characters by frequency analysis using counter on encrypted message
message_freq = Counter(message)
most_common_encrypted = [char for char, freq in message_freq.most_common()]

count most frequent characters in 'War and Peace' in the language
war_and_peace_freq = Counter(war_and_peace_text)
most_common_language = [char for char, freq in war_and_peace_freq.most_common() if char in symbols]

Initialize the mappings based on this counting requency analysis,
Obtain most common mapping for the next iteration
initial_mapping = list(symbols)
for encrypted_char, language_char in zip(most_common_encrypted, most_common_language):
encrypted_index = initial_mapping.index(encrypted_char)
language_index = initial_mapping.index(language_char)
initial_mappinglencrypted_index], initial_mapping[language_index] = initial_mapping[language_index], initial_map

#run MH and get most common mapping computed with highest score for the next iteration
best_score = ~float('inf')
best_mapping = None
iterations = 15000
for attempt in range(5): # Trying multiple times to see if this "smart" initialization works !!!
sig_mapping = initial_mappingl[:]
for i in range(1, iterations + 1):
signew = generate_sig(sig_mapping)
1s_sig = get_logscore(message, sig_mapping, Tnorm, symbol_to_index)
1s_signew = get_logscore(message, signew, Tnorm, symbol_to_index)
if random.random() < math.exp(ls_signew - 1ls_sig):
sig_mapping = signew
1s_sig = ls_signew

if i % 100 == 0: #increments every 100 iteration to save time
print(f'Attempt {attempt}, Iteration {i}: Decrypted: {decrypt_message(message, sig_mapping, symbol_to_in

if 1s_sig > best_score:
best_score = ls_sig
best_mapping = sig_mapping

Final output with the best result
print('Best Decryption:', decrypt_message(message, best_mapping, symbol_to_index) [:60])

Attempt @, Iteration 1200: Decrypted: ar m! !ifrgen ory mine kflrenoble 'eond m! costen goke me di
Attempt @, Iteration 1300: Decrypted: ar m! !ifrgen ory mine kflrenoble 'eond m! costen goke me di
Attempt @, Iteration 1400: Decrypted: ar m! !iprgen ory mine kplrenoble 'eond m! costen goke me di

Figure 47: Code written for Metropolis Hastings algorithm implementation- smart initialization

64

Question 6: Code

todo: sample a topic for each (doc, word) and update A_dk, B_kw correspondingly
def sample_counts(self)
For each document and each word, samples from z_id|x_id, theta, phi
and adds the results to the counts A_dk and B_kw
self.A_dk.fill(0)
self.B_kw.fill(0)
if self.do_test:
self.A_dk_test.fill(o)
self.B_kw_test.fill(0)

for d in range(self.n_docs):
for w in range(self.n_words):

Sample topics for each word in each document

word_count = self.docs_words([d, w]

if word_count > 0:
topic_distribution = self.topic_doc_words_distr[:, d, w]
sampled_topic = self.rand_gen.choice(self.n_topics, p=topic_distribution)
self.A_dk[d, sampled_topic] += word_count
self.B_kw[sampled_topic, w] += word_count

if self.do_test:
Repeat sampling for test data
word_count_test = self.docs_words_test[d, w]
if word_count_test > 0:
sampled_topic_test = self.rand_gen.choice(self.n_topics, p=topic_distribution)
self.A_dk_test[d, sampled_topic_test] += word_count_test
self.B_kw_test[sampled_topic_test, w] += word_count_test

Figure 48: Code written for First Todo: Sample a topic for each (doc, word) and update A dk,
B _kw correspondingly in Standard Gibbs Sampling Python Code

todo: sample everything from self.rang_gen to control the random seed (works as numpy.random)
todo: sample theta and phi
def update_params(self):

Samples theta and phi, then computes the distribution of

z_id and samples counts A_dk, B_kw from it

Sample new theta values

for d in range(self.n_docs):

self.thetald, :] = self.rand_gen.dirichlet(self.A_dk([d, :] + self.alpha)

Sample new phi values
for k in range(self.n_topics):
self.philk, :] = self.rand_gen.dirichlet(self.B_kwlk, :] + self.beta)

self.update_topic_doc_words()
self.sample_counts()

Figure 49: Code written for for Second Todo: Sample everything from self.rang gen to control the
random seed (works as numpy.random). Third Todo: sample theta and phi in Standard Gibbs
Sampling Python Code

65

todo: implement log-like
Hint: use scipy.special.gammaln (imported as gammaln) for log(gamma)
def update_loglike(self, iteration):
Updates loglike of the data, omitting the constant additive term
with Gamma functions of hyperparameters
Calculate log-likelihood for training data
loglike_train = @
for d in range(self.n_docs):
for k in range(self.n_topics):
loglike_train += gammaln(self.A_dk[d, k] + self.alpha) - gammaln(self.alpha)
loglike_train -= gammaln(np.sum(self.A_dk[d, :]) + self.alpha * self.n_topics)
- gammaln(self.alpha * self.n_topics)

for k in range(self.n_topics):
for w in range(self.n_words):
loglike_train += gammaln(self.B_kw[k, w] + self.beta) - gammaln(self.beta)
loglike_train -= gammaln(np.sum(self.B_kwl[k, :1) + self.beta * self.n_words)
- gammaln(self.beta * self.n_words)

self.loglike[iteration] = loglike_train

Calculate log-likelihood for test data
if self.do_test:
loglike_test = @
for d in range(self.n_docs):
for k in range(self.n_topics):
loglike_test += gammaln(self.A_dk_test[d, k] + self.alpha) - gammaln(self.alpha)
loglike_test —= gammaln(np.sum(self.A_dk_test[d, :]1) + self.alpha * self.n_topics)
- gammaln(self.alpha * self.n_topics)

for k in range(self.n_topics):
for w in range(self.n_words):
loglike_test += gammaln(self.B_kw_test[k, w] + self.beta) - gammaln(self.beta)
loglike_test -= gammaln(np.sum(self.B_kw_test[k, :1) + self.beta * self.n_words)
- gammaln(self.beta * self.n_words)

self.loglike_test[iteration] = loglike_test

Figure 50: Code written for for 4th Todo: Implement Log-like in Standard Gibbs Sampling Python Code

66

def update_loglike(self, iteration):
Updates loglike of the data, omitting the constant additive term
with Gamma functions of hyperparameters
Calculate log-likelihood for training data
loglike_train = @
for d in range(self.n_docs):
for k in range(self.n_topics):
loglike_train += gammaln(self.A_dk[d, k] + self.alpha) - gammaln(self.alpha)
loglike_train -= gammaln(np.sum(self.A_dk[d, :]) + self.alpha * self.n_topics)
- gammaln(self.alpha * self.n_topics)

for k in range(self.n_topics):
for w in range(self.n_words):
loglike_train += gammaln(self.B_kwlk, w]l + self.beta) - gammaln(self.beta)
loglike_train -= gammaln(np.sum(self.B_kwlk, :]) + self.beta * self.n_words)
- gammaln(self.beta * self.n_words)

self.loglike[iteration] = loglike_train

Calculate log-likelihood for test data
if self.do_test:
loglike_test = @
for d in range(self.n_docs):
for k in range(self.n_topics):
loglike_test += gammaln(self.A_dk_test[d, k] + self.alpha) - gammaln(self.alpha)
loglike_test -= gammaln(np.sum(self.A_dk_test[d, :]1) + self.alpha * self.n_topics)
- gammaln(self.alpha * self.n_topics)
for k in range(self.n_topics):
for w in range(self.n_words):
loglike_test += gammaln(self.B_kw_test[k, w] + self.beta) - gammaln(self.beta)
loglike_test —-= gammaln(np.sum(self.B_kw_testl[k, :]) + self.beta * self.n_words)
- gammaln(self.beta * self.n_words)

self.loglike_test[iteration] = loglike_test

Figure 51: Code written for for 4th Todo: Implement Log-like in Collapsed Gibbs Sampling Python Code

67

In [20]:

def autocor(x):
n = len(x)
variance = np.var(x)
X = X - np.mean(x)
r = np.correlate(x, x, mode='full')[-n:]
assert np.allclose(r, np.array([(x[:in-kl#x[-(n-k)z]1).sum() for k in range(n)]))
result = r/(variancex(np.arange(n, @, -1}))
return result

de

=,

plot_autocor(log_likes, title, max_lag=5@0):
acorr = autocor(log_likes)
plt.figure(figsize=(1@, 5))
plt.plot(acorr[:max_lagl, marker='o")
plt.title(title)

plt.xlabel{'Lag")
plt.ylabel('Autocorrelation')

plt.ylim(-08.2, 08.4)

plt.show()

def main():
print('Running toyexample.data with the standard sampler')

docs_words_train, docs_words_test = read_data('toyexample.data')
n_docs, n_words = docs_words_train.shape

n_topics = 3

alpha = 1

beta = 1

random_seed = @

iterations = 2500

sampler = GibbsSampler(n_docs=n_docs, n_topics=n_topics, n_words=n_werds, alpha=alpha, beta=beta,
random_seed=random_seed)

topic_doc_words_distr, theta, phi = sampler.run{docs_words_train, docs_words_test, n_iter=iterations,
save_loglike=True)

print(phi * [phi > le-2])
like_train, like_test = sampler.get_loglike()

sampler_collapsed = GibbsSamplerCollapsed(n_docs=n_docs, n_topics=n_topics, n_words=n_words,
alpha=alpha, beta=beta, random_seed=random_seed)

Pass the updated number of iterations
doc_word_samples = sampler_collapsed.run(docs_words_train, docs_words_test, n_iter=iterations,
save_loglike=True)

topic_counts = np.zeros((3, 6))
for doc in range(doc_word_samples.shape[@8]):

for word in range(doc_word_samples.shapel1]):

for topic in doc_word_samples[doc, word]:
topic_counts[topic, word] += 1

print(topic_counts)

like_train_collapsed, like_test_collapsed = sampler_collapsed.get_loglike()

burn_in = 3@ #number of burn-ins

#remove burn-in iterations
like_train_burned_in = like_train[burn_in:]
like_test_burned_in = like_test[burn_in:]

Plot standard Gibbs sampler autocorrelation
plot_autocor(like_train_burned_in, 'Autocorrelation of Log Likelihood (Train) - Standard Gibbs Sampler')
plot_autocor(like_test_burned_in, 'Autocorrelation of Log Likelihood (Test) - Standard Gibbs Sampler')

Remove burn-in iterations
like_train_collapsed_burned_in = like_train_collapsed[burn_in:]
like_test_collapsed_burned_in = like_test_collapsed[burn_in:]

Plot follapsed Gibbs sampler autocorrelation

plot_autocor{like_train_collapsed_burned_in, 'Autocorrelation of Log Likelihood (Train) - Collapsed Gibbs Sample
plot_autocor(like_test_collapsed_burned_in, 'Autocorrelation of Log Likelihood (Test) - Collapsed Gibbs Sampler'

if _ name__ == '__main__':
main()

Figure 52: Code written for 6b: Autocorrelation plots

68

In [53]: def main():
print{'Running toyexample.data with the colgibs sampler')} #change either to std gibs or colgibs

docs_words_train, docs_words_test = read_data('./toyexample.data')
n_docs, n_words = docs_words_train.shape

n_topics = 3

alpha = 1 #constant parameter

random_seed = @

iterations = 258

betas = [@.5, 1, 1@] # Different alpha values
for beta in betas: #copy and paste Standard Gibbs/Gibbs Sampler Collapsed functions here from main python script
sampler_collapsed = GibbsSamplerCollapsed(n_docs=n_docs, n_topics=n_topics, n_words=n_words,
alpha=alpha, beta=beta, random_seed=random_seed)
doc_word_samples = sampler_collapsed.run(docs_words_train, docs_words_test, n_iter=iterations,
pave_loglike=True)
like_test, _ = sampler_collapsed.get_loglike()
#change this accordingy to parameters and log likelihood values for like_train or like_test
plt.plot(like_test, label=f'beta={beta}')

plt.ylabel('log likelihood')
plt.title('Log Likelihood (Training Set) with Collapsed Gibbs')
plt.xlabel('iteration')
plt.legend(loc="'center left', bbox_to_anchor=(1, 8.5))
plt.show()

if __name__ == '__main_ ':
main()

Running toyexample.data with the colgibs sampler

Figure 53: Code written for 6d: Code for modifying different parameters «, 5, K and plotting log-likelihood

69

	Problem 1: Models for binary vectors
	a) Inappropriate model: Multivariate Gaussians
	b) ML estimator for lambda
	c) MAP estimator for lambda
	d) ML parameters of Multivariate Bernoulli
	e) MAP parameters: lambda

	Problem 2: Model Selection
	a) lambda
	b) lambda
	c) lambda

	Problem 3: EM for Binary Data
	a) Likelihood of mixture of K multivariate Bernoulli distributions
	b) lambda
	c) Maximizing Parameters of lambda
	d) Log Likelihood for different K
	e) Responsibilities, Cluster Means & Probability Vector Images
	f) GZip & Naive Encoding
	g) Total Encoding Cost

	Problem 4: LGSSMs, EM and SSID
	a) Kalman Filter & Kalman Smoother
	b) EM on ssm_spin.txt training data
	Update for Rnew:
	Update for Qnew:

	c) EM on ssm_spins_test.txt test data

	Problem 5: Decrypting Messages with MCMC
	a) ML Estimates Formulae & Probability Estimates
	b) Joint Probability given
	c) Acceptance Probability in MH algorithm
	d) MH algorithm
	e) Ergodicity
	Irreducibility Proof
	Aperiodicity Proof

	f) Different Approaches to decoding
	Symbol Probabilities alone:
	2nd Order Markov Chain:
	Encryption Scheme with Non-unique Mappings:
	Chinese Language:

	Problem 6: Implementing Gibbs Sampling for LDA
	a) ToyExample.data
	b) Autocorrelation
	c) Gibbs Sampler Convergence
	d) Varying parameters
	Varying lambda
	Varying lambda
	Varying K/Number of Topics

	Problem 7: Optimization
	a) Lagrange Multiplier Method & Local Extrema
	b) Newton-Raphson Method

	Problem 8: Eigenvalues as solutions of optimization problems
	a) lambda
	b) lambda
	c) lambda

	Appendix
	Images & Graphs
	1) Learned Probability Vector Images at each run for each component k={2,3,4,7,10}
	2) Running toyexample.data with larger number of iterations n_iter= 2000

	Code Execution
	Question 1: Code
	Question 2: Code
	Question 3: Code
	Question 4: Code
	Question 5: Code
	Question 6: Code

