
Probabilistic & Unsupervised Learning Summative Assignment

Gatsby Computational Neuroscience Unit - Peter Orbanz

Student ID: 23205123

MSc Computational Statistics & Machine Learning

Department of Computer Science
University College London

London
15 November 2023

Contents
Problem 1: Models for binary vectors 3

a) Inappropriate model: Multivariate Gaussians . 3
b) ML estimator for pd . 3
c) MAP estimator for pd . 4
d) ML parameters of Multivariate Bernoulli . 5
e) MAP parameters: α = β = 3 . 6

Problem 2: Model Selection 7
a) M1 . 7
b) M2 . 7
c) M3 . 8

Problem 3: EM for Binary Data 9
a) Likelihood of mixture of K multivariate Bernoulli distributions 9
b) Rnk . 9
c) Maximizing Parameters of pkd & πk . 10
d) Log Likelihood for different K . 12
e) Responsibilities, Cluster Means & Probability Vector Images . 13
f) GZip & Naive Encoding . 15
g) Total Encoding Cost . 15

Problem 4: LGSSMs, EM and SSID 16
a) Kalman Filter & Kalman Smoother . 16
b) EM on ssm_spin.txt training data . 17

Update for Rnew: . 17
Update for Qnew: . 18

c) EM on ssm_spins_test.txt test data . 20

Problem 5: Decrypting Messages with MCMC 21
a) ML Estimates Formulae & Probability Estimates . 21
b) Joint Probability given σ . 24
c) Acceptance Probability in MH algorithm . 25
d) MH algorithm . 25
e) Ergodicity . 28

Irreducibility Proof . 28
Aperiodicity Proof . 28

f) Different Approaches to decoding . 28
Symbol Probabilities alone: . 28
2nd Order Markov Chain: . 29
Encryption Scheme with Non-unique Mappings: . 29
Chinese Language: . 30

Problem 6: Implementing Gibbs Sampling for LDA 30
a) ToyExample.data . 30
b) Autocorrelation . 33
c) Gibbs Sampler Convergence . 35
d) Varying parameters . 35

Varying α . 35
Varying β . 36
Varying K/Number of Topics . 37

1

Problem 7: Optimization 38
a) Lagrange Multiplier Method & Local Extrema . 38
b) Newton-Raphson Method . 40

Problem 8: Eigenvalues as solutions of optimization problems 40
a) sup

x∈Rn

RA(x) . 40

b) RA(x) ≤ λ1 . 41
c) RA(x) < λ1 . 42

Appendix 42
Images & Graphs . 42

1) Learned Probability Vector Images at each run for each component k={2,3,4,7,10} 42
2) Running toyexample.data with larger number of iterations n_iter = 2000 48

Code Execution . 49
Question 1: Code . 50
Question 2: Code . 52
Question 3: Code . 53
Question 4: Code . 58
Question 5: Code . 61
Question 6: Code . 65

2

Problem 1: Models for binary vectors

a) Inappropriate model: Multivariate Gaussians
The multivariate Gaussian (also known as multivariate normal) distribution is used to model continuous
data that can take any value in a continuous range. However, our binary images have pixels that can only
take on the values 0 or 1. Therefore:

• Value Constraints: In the binary image, pixel values are either 0 (black) or 1 (white). In contrast, a
multivariate Gaussian can produce any real-valued number as an output, which doesn’t fit with the
binary nature of our data.

• No Physical Interpretation: Any value other than 0 or 1 has no physical interpretation in the context
of binary images. For example, what would a pixel value of 0.57 mean for a black and white image?

• Invalid Assumptions: The multivariate Gaussian assumes that the data follows a bell-shaped curve
(normal distribution). This assumption doesn’t hold for binary data which is bimodal (having two
peaks).

b) ML estimator for pd

Images modelled as i.i.d. samples from a D-dimensional multivariate Bernoulli distribution with parameter
p = (p1,, pD), which has form:

P (x|p) = ΠD
d=1p

xd

d (1− pd)
(1− xd) (1)

For the given data, the likelihood is given by the product of probabilities for each individual image for the
vector space p.

L(p|x1,xN) = ΠN
n=1Π

D
d=1p

xn
d

d (1− pd)
(1− xnd) (2)

Log likelihood function then becomes;

ln(L(p)) = ΣN
n=1Σ

D
d=1[x

n
d ln(pd) + (1− xnd)ln(1− pd))] (3)

Differentiating the log likelihood with respect to pd, For xnd ln(pd):

δ

δpd
xnd ln(pd) = xnd

1

pd

For (1− xnd)ln(1− pd):
δ

δpd
(1− xnd)ln(1− pd) = (1− xnd)

−1

1− pd

Substituting these into our log-likelihood expression:

δln(L(p))

δpd
= ΣN

n=1[x
n
d

1

pd
− (1− xnd)

1

1− pd
]

ΣN
n=1[x

n
d

1

pd
− (1− xnd)

1

1− pd
] = 0

Now, we’ll solve for pd:

ΣN
n=1x

n
d

1

pd
= ΣN

n=1(1− xnd)
1

1− pd

Multiplying through by pd(1− pd):

ΣN
n=1x

n
d (1− pd) = ΣN

n=1pd(1− xnd)

Expanding this equation:
ΣN

n=1x
n
d − pdΣ

N
n=1x

n
d = pdN − pdΣ

N
n=1x

n
d

pd =
1

N
ΣN

n=1x
n
d

3

c) MAP estimator for pd

Maximum A Posteriori (MAP) estimate for pd given the data. Likelihood is given by the Bernoulli distribu-
tion for the binary data:

P (D|θ) = ΠN
n=1Π

D
d=1p

xn
d

d (1− pd)
1−xn

d

Prior is given by:

P (θ) = ΠD
d=1

1

B(α, β)
pα−1
d (1− pd)

β−1

In order to the MAP estimate(from lecture slides):

θMAP = argmaxP (θ|D)

θMAP = argmaxP (θ)P (D|θ)

Taking the logarithm:
lnP (θ|D) = lnP (D|θ) + lnP (θ)

Differentiating with respect to pd, and setting it to zero to give us maximum. For lnP (D|θ):

δ

δpd
ΣN

n=1[x
(n)
d ln(pd) + (1− x

(n)
d ln(1− pd))]

For lnP (θ):
δ

δpd
[(α− 1)lnpd + (β − 1)ln(1− pd)]

Adding these together and setting to zero:

ΣN
n=1x

(n)
d ln(pd) + (1− x

(n)
d ln(1− pd)) + (α− 1)lnpd + (β − 1)ln(1− pd) = 0

ΣN
n=1x

(n)
d + α− 1 = pd[N + α+ β − 2]

Therefore, the MAP estimate for pd is:

pMAP
d =

α− 1 + ΣN
n=1x

(n)
d

N + α+ β − 2

4

d) ML parameters of Multivariate Bernoulli

Figure 1: MAP Estimates as 8× 8 image

5

e) MAP parameters: α = β = 3

Figure 2: MAP Estimates as 8× 8 image with α = β = 3

MAP estimate performs better than the ML estimate. The ML estimate may not perform well with sparse
data for certain pixels. If a pixel is rarely ’on’(almost always 0), ML could suggest a very low probability,
effectively ignoring the rare occurrences where pixel is ’1’. This might lead to underestimating the true
likelihood of such events. MAP, with a prior that is not too strong, can potentially solve this issue by
smoothing the probabilities and ensuring that even rare events are assigned a non-zero likelihood, which
might reflect their true probabilities more accurately.

Other advantages of MAP estimate over ML estimate:

• Preventing Zero Probabilities: With MLE, this could lead to issues in computational mod-
els where calculations depend on probabilities such as log-likelihood computations. MAP estimation
ensures that each event has a non-zero probability which can lead to more stable computation.

• Choice of α & β: This essentially denotes the prior belief. With α = β = 3, this indicates each pixel
has equal chance of being ’0’ and ’1’ before seeing the data. The prior is not biased to either outcome

6

but it is not completely non-informative.

• Adaptability to different scenarios: MAP estimate allows, depending on the situation, adjustment
to α and β. If there is reason that pixels are more likely to be ’on’, you can choose α ≥ β.

Problem 2: Model Selection

a) M1

Given this model 1, the probability of a single pixel being either 0 or 1 is pd = 0.5. For a single image x(n)
with D pixels:

• The probability of the first pixel being either 0 or 1 is 0.5

• The probability of the second pixel being either 0 or 1 is 0.5

Therefore, the probability of observing any particular binary image x(n) of D pixels under this model is:

P (x(n)|M1) = P (x1|M1)× P (x2|M1)× · · · × P (xD|M1)︸ ︷︷ ︸
for D pixels

Using our single pixel probability:

P (x(n)|M1) = (0.5)× (0.5)× · · · × (0.5)

P (x(n)|M1) = (0.5D)N

Using base conversion, and logarithmic properties:

(0.5D)N = (2−1)D×N

2−D×N = 2−ND

P (D|M1) = 2−ND

b) M2

Given this model 2, all D components are generated from Bernoulli distributions with unknown but identical
pd. Let us denote X, where x(n) is a D-dimensional binary vector:

X = {x(1), x(2), ..., x(n)}

and P (D|M2) as the likelihood of data D given the model M2. P (x|p) which has a D-dimensional multi-
variate Bernoulli distribution with parameter vector p = (p1, ..., pD) as:

P (x|p) = ΣD
d=1p

xd

d (1− pd)
(1−xd)

Therefore, for all parameters vectors p:

P (x(n)|pd) = p
Σdx

(n)
d

d (1− pd)
D−Σdx

(n)
d

P (D|pd) = ΠN
n=1P (x

(n)|pd)

To find the overall likelihood of data under model M2, without knowing the specific pd, we integrate over
all possible values of pd which range from 0 < pd < 1, due to the uniform prior.

P (D|M2) = Πn=1N

∫ 1

0

P (x(n)|pd)P (pd)dpd

7

P (D|M2) =

∫ 1

0

p
ΣN

n=1Σddx
(n)
d

d (1− pd)
ND−ΣN

n=1Σddx
(n)
d x1dpd

=

∫ 1

0

(
p
Σdx

(n)
d

d (1− pd)
ND−Σdx

(n)]
d

)
× 1dpd

Rewriting as a Beta function where the beta function is:

B(z1, z2) =

∫ 1

0

tz1−1(1− t)z2−1dt

B(ΣN
n=1Σdx

(n)
d + 1, ND − ΣN

n=1Σdx
(n)
d + 1) =

∫ 1

0

pz1−1
d (1− pd)

z2−1dt

P (D|M2) = B(ΣN
n=1Σdx

(n)
d + 1, ND − ΣN

n=1Σdx
(n)
d + 1)

=

∫ 1

0

pz1−1
d (1− pd)

z2−1dt

c) M3

Given M3 where each component is Bernoulli distributed with separate, unknown pd, and given a single
pixel d, likelihood contribution from all images for that pixel n:

P (Dd|pd) = ΠN
n=1p

x
(n)
d

d (1− pd)
1−x

(n)
d

Marginalizing pd out, we integrate over its possible range [0,1] with respect to the uniform prior.

P (Dd) =

∫ 1

0

P (Dd|pd)dpd

=

∫ 1

0

(
ΠN

n=1p
x
(n)
d

d (1− pd)
1−x

(n)
d

)
dpd

Thus, as pixels are independent, evidence for entire dataset is product of evidence for each pixel:

P (D|M3) = ΠD
d=1P (Dd)

P (D|M3) = ΠD
d=1p

x
(n)
d

d (1− pd)
1−x

(n)
d

Rewriting this as a Beta function:

P (D|M3) = ΠD
d=1B

(
ΣN

n=1x
(n)
d + 1,ΣN

n=1(1− x
(n)
d) + 1)

)
In order to calculate the posterior probabilities of each of the 3 models, we have Bayes theorem:

P (M|D) =
P (D|M) · P (M)

P (D)

Since we assumed that all models are equally likely a priori:

P (M1) = P (M2) = P (M3)

With the likelihoods provided above, and the evidence P (D) which is the probability of data under any
model, which is a sum of likelihoods of the data under all models, considering priors:

P (D) = P (D|M1) · P (M1) + P (D|M2) · P (M2) + P (D|M3) · P (M3)

8

Posterior Probabilities of Model 1,2,3
As priors are equal, P(D) becomes sum of the likelihoods of the 3 models:

P (D) = P (D|M1) + P (D|M2) + P (D|M3)

To compute posterior probabilities for each model, in log form:

logP (Mi|D) = log (P (D|Mi))− log (P (D|M1) + P (D|M2) + P (D|M3))

Converting these log probabilities back to posterior probabilities:

P (Mi|D) = elog(P (D|Mi))−log(P (D|M1)+P (D|M2)+P (D|M3))

Therefore:

Table 1: Posterior Probabilities of M1,M2,M3

Mi Natural Log Likelihood P (Mi|D)

M1 -4436 9.143e− 255

M2 -4283 1.434e− 188

M3 -3851 1.0

Problem 3: EM for Binary Data

a) Likelihood of mixture of K multivariate Bernoulli distributions
Probability of observing x(n) under a single Bernoulli component k is:

P (x(n)|k) = ΠD
d=1p

x
(n)
d

kd (1− pkd)
1−x

(n)
d (4)

• where x(n)d value of dth pixel in nth image.

• pkd is probability that dth pixel takes value 1 under kth Bernoulli component.

Overall likelihood of observing x(n) under the mixture model is weighted sum of likelihoods from each
component:

P (x(n)|π, P) = ΣK
k=1πkP (x

(n)|k),

P (x(n)|π, P) = ΣK
k=1πkΠ

D
d=1p

x
(n)
d

kd (1− pkd)
1−x

(n)
d (5)

Likelihood of entire dataset {x(1), x(2), ..., x(n)}, under the assumption that images are i.i.d:

L(π, P) = ΠN
n=1P (x

(n)|π, P)

L(π, P) = ΠN
n=1Σ

K
k=1πkΠ

D
d=1p

x
(n)
d

kd (1− pkd)
1−x

(n)
d

b) Rnk

For mixture models with latent variables, let Rnk be the posterior probability of latent variable s(n), being
in state k. Given observation x:

Rnk = P (s(n) = k|x(n), π, P)

Rnk =
P (x(n)|s(n) = k, P)P (s(n) = k|π)

P (x(n)|π, P)

9

From Equation 5:

P (x(n)|π, P) = ΣK
j=1πjΠ

D
d=1p

x
(n)
d

jd (1− pjd)
1−x

(n)
d

and:
P (x(n)|k) = ΠD

d=1p
x
(n)
d

kd (1− pkd)
1−x

(n)
d

Therefore:

Rnk =
πkΠ

D
d=1p

x
(n)
d

kd (1− pkd)
1−x

(n)
d

ΣK
j=1πjΠ

D
d=1p

x
(n)
d

jd (1− pjd)1−x
(n)
d

c) Maximizing Parameters of pkd & πk

Complete data log likelihood is the log joint log P (S(n) = k|x(n), π, P). Expected log joint with respect to
Rnk which is found in the E-step is:

Q(π, P) = ΣN
n=1Σ

K
k=1RnklogP (x

(n), s(n) = k|π, P) (6)

From the Equation 6, logP (x(n), s(n) = k|π, P):

logP (x(n), S(n) = k|π, P) = logP (x(n)|s(n) = k, P) + logP (s(n) = k|π)

Substituting Equation 4 into Equation 7:

logP (x(n), S(n) = k|π, P) = logP (x(n)|s(n) = k, P) + logP (s(n) = k|π) (7)

= log

(
ΠD

d=1p
x
(n)
d

kd (1− pkd)
1−x

(n)
d

)
+ logπk

= ΣD
d=1x

(n)
d logpkd + (1− x

(n)
d)log(1− pkd) + logπk

Thus:
Q(π, P) = ΣN

n=1Σ
K
k=1Rnk

(
ΣD

d=1x
(n)
d logpkd + (1− x

(n)
d)log(1− pkd) + logπk

)
Setting up derivative with respect to pkd:

δQ(π, P)

δpkd
=
x
(n)
d

pkd
+

(
−
(1− x

(n)
d)

1− pkd

)
δQ(π, P)

δpkd
= ΣN

n=1Rnk

(
x
(n)
d

pkd
−

1− x
(n)
d

1− pkd

)
Setting derivative above to 0:

δQ(π, P)

δpkd
= ΣN

n=1Rnk

(
x
(n)
d

pkd
−

1− x
(n)
d

1− pkd

)
= 0

ΣN
n=1Rnk

x
(n)
d (1− pkd)− pkd(1− x

(n)
d)

pkd(1− pkd)
= 0

ΣN
n=1Rnkx

(n)
d (1− pkd)− pkd(1− x

(n)
d) = 0

ΣN
n=1Rnk

(
x
(n)
d − x

(n)
d pkd − pkd + pkdx

(n)
d

)
= 0

ΣN
n=1Rnk −

(
x
(n)
d pkd + pkd − pkdx

(n)
d

)
= ΣN

n=1Rnk − x
(n)
d

ΣN
n=1Rnk(pkd) = ΣN

n=1RnK(x
(n)
d)

Therefore, solving for pkd:

pkd =
ΣN

n=1Rnk(x
(n)
d)

ΣN
n=1Rnk

10

Setting up derivative with respect to πk

Considering the constraint:
ΣK

k=1πk = 1 (8)

Making use of a Lagrange multiplier λ and define the Lagrangian as:

L(π, λ) = Q(π, P) + λ
(
ΣK

k=1πk − 1
)

Differentiating the Lagrangian with respect to πk:

δL
δπk

= ΣN
n=1Rnk

1

πk
+ λ

Setting the differentiated equation above to 0:

ΣN
n=1Rnk

1

πk
+ λ = 0

ΣN
n=1Rnk = −λπk

Summing over k both sides:
ΣK

k=1Σ
N
n=1Rnk = −λΣK

k=1πk

Now with the constraint 8 in mind:
ΣK

k=1Σ
N
n=1Rnk = −λ

Due to the constraint 8, for all n because the sum of responsibilities over all components for a given data
point is 1, so:

N = −λ;λ = −N

Plugging into equation for πk:
ΣN

n=1Rnk = Nπk

πk =
1

N
ΣN

n=1Rnk

11

d) Log Likelihood for different K

Figure 3: Log Likelihoods over Iterations for Different Values of K

12

e) Responsibilities, Cluster Means & Probability Vector Images

Figure 4: Learned probability vectors as images for k = {2, 3, 4, 7, 10}, each run 5 times

From the Figure 4 above, for lower K values, the components tend to capture more general patterns of the
data, while for higher K values, the components might capture more specific features but might have a greater
risk of modeling noise. For k=10, we can see digits 2,7,0 and 5 appearing in the 8 × 8 images. The algorithm
works well, and finds good clusters. Looking at the responsibility of the EM algorithm, the numbers from
the responsibilities above imply that as K increases, clarity of cluster assignments might decrease.

13

Figure 5: Responsibilities πk for k = {2, 3, 4, 7, 10}

From the responsibilities figure above, and the cluster means as learned probability vector images in the
Appendix, for k=2, model is very certain about cluster assignments as the probabilities in the rows are close
to 1 or 0, suggesting a clear division. When k=3, there is still a high degree of certainty. As the K values
increase, the responsibilities are more distributed evenly across clusters for some data points or might be
assigning data points into too many clusters.However, when looking at the cluster means(Appendix), and
the learned probability vector images, it might say otherwise. As the number of K increases as shown in
Figure 4, the cluster assignments are much more certain. Improvements to the Model:

• Better initialization strategies can lead to more consistent solutions, such as using k-means clustering
to initialize the means.

14

• Tuning the convergence criteria (tolerance, maximum iterations) can ensure the algorithm has con-
verged properly.

f) GZip & Naive Encoding
To express the log-likelihood in bits, we converted the natural log likelihoods to base 2. THe natural log is
converted to log base 2 as:

log2(x) =
ln(x)

ln(2)

In information theory, entropy is typically measured in bits, which are units of information based on binary
logarithms (base 2).The notion of entropy is tied to the efficiency of encoding schemes: a lower entropy
suggests that less data is required, on average, to encode samples from the distribution. we can interpret
the log-likelihood as an average code length in bits required to encode the data if we were to use an optimal
code based on the probability distribution estimated by our model.

Table 2: Sizes and Log likelihood of Data

Log-likelihood -4452
Naive Encoding Length 6400 bits
GZip Compressed Size 5544 bits

From the table, the negative value suggests that we’re dealing with the log of a probability less than
1, which is typical in information theory when calculating entropy or expected message length. The naive
encoding length is the total number of bits required to store the data without any compression, simply by
storing each binary pixel directly, amounting to 6400 bits for the dataset. The compressed size using gzip,
which is 5544 bits, indicates that gzip is able to compress the data to a size that is less than the naive
encoding, showing the efficacy of gzip’s compression algorithm in reducing the size of the data. However, the
compressed size is still larger than the magnitude of the log-likelihood in bits, which suggests that gzip, while
effective, does not reach the theoretical limit of data compressibility as implied by the model’s log-likelihood.
The difference between the gzip compression and the theoretical limit can be attributed to the practical
constraints and heuristic methods used in gzip, which, unlike the theoretical model, has to work with actual
data encoding and cannot achieve the entropy limit of the modeled distribution.

g) Total Encoding Cost

Table 3: Total Encoding Cost with k vs Gzip Compression

Total Encoding Cost: k=2 5071 bits
Total Encoding Cost: k=3 4732 bits
Total Encoding Cost: k=4 4730 bits
Total Encoding Cost: k=7 4027 bits
Total Encoding Cost: k=10 3780 bits

GZip Compressed size 5568 bits

For all values of K, total encoding costs are less than the data size compressed using gzip, which suggests that
the model-based encoding is more efficient in terms of space. As K increases from 2 to 7, total encoding cost
generally decreases, indicating that models with more components can capture the data structure better,
leading to more efficient encoding of data. However, as K becomes too large, the cost starts to diminish
which could be a sign of overfitting- where model starts to fit the noise. There seems to be an optimal range
for K. The table shows that with an appropriately chosen K, it can offer a better representation than gzip.

15

Problem 4: LGSSMs, EM and SSID

a) Kalman Filter & Kalman Smoother

Figure 6: Estimated States from Kalman Filter yt|x1:t vs Kalman Smoother yt|x1:T over Time

The top two plots show the estimated states from the Kalman Filter (left) and Kalman Smoother (right)
respectively. The Kalman Filter provides real-time estimates as new data comes in, thus it can be more
reactive to recent observations, which may lead to more volatility in the state estimates. This can be
observed as more fluctuations in the state lines. The Kalman Smoother, on the other hand, adjusts the state
estimates by considering both past and future observations, leading to smoother state estimates which are
less influenced by recent noise.

The uncertainty in the state estimate at any given time point during smoothing is influenced by observa-
tions that occur later in time. Future observations can provide context that is not available at the moment
when the Kalman filter makes its predictions, such as revealing dependencies that only become apparent
later. The Kalman Smoother, on the other hand, shows a significant reduction in uncertainty (higher log
determinant values) for most time points, with a dramatic increase towards the end. The Kalman smoother,
as shown, provides a more accurate estimate by considering the whole dataset, which shows why V (un-
certainty on the estimate) decreases over time compared to the filter, which utilizing data up to only that
current state.

16

b) EM on ssm_spin.txt training data
Update for Rnew:

M-Step for R:

p(xt|yt) ∝ exp

(
−1

2
(xt − Cyt)

TR−1(xt − Cyt)

)
The goal is to maximize the expected log-likelihood with respect to R, given current estimates of yt and C.

Rnew = argmax
R

〈∑
t

ln p(xt|yt)

〉
q

Since the log probability of the Gaussian distribution is give by:

ln p(xt|yt) = ln

(
(exp(

1

2
(xt − Cyt)

TR−1(xt − Cyt))

)
− 1

2
ln |2πR−1|

where |2πR−1| denotes the determinant of 2πR−1 which is part of the normalization constant of the Gaussian
distribution. The log of an exponential function simplifies to the exponent:

ln

(
(exp(

1

2
(xt − Cyt)

TR−1(xt − Cyt))

)
= −1

2
(xt − Cyt)

TR−1(xt − Cyt)

The normalization constant term becomes:

−1

2
ln |2πR−1| = −T

2
ln |det(R−1)| − constant

Combining these results to gain expression for log likelihood for entire data-set:

ΣT
t=1 ln p(xt|yt) = −T

2
ln |det(R−1)| − 1

2
ΣT

t=1(xt − Cyt)
TR−1(xt − Cyt)

The quadratic term, when expanded becomes:

−1

2
ΣT

t=1(xt − Cyt)
TR−1(xt − Cyt) = −1

2
ΣT

t=1(x
T
t R

−1xt − xTt R
−1Cyt − yTt C

TR−1xt + yTt C
TR−1Cyt)

Thus, the final arg max argument becomes:

ΣT
t=1 ln p(xt|yt) = −T

2
ln|det(R−1)| − 1

2
ΣT

t=1

(
xTt R

−1xt − xTt R
−1Cyt − yTt C

TR−1xt + yTt C
TR−1Cyt

)
Using δTr[AB]

δA = BT , and using matrix calculus, for matrix X:

δ ln |det(X)|
δX

= (X−1)T (9)

δATXB

δX
= ABT (10)

Differentiating first term of Equation ?? and using Equation 10:

δ

δR−1
(ΣT

t=1lnp(xt|yt)) =
T

2
RT +

δ{·}
δR−1

(
−1

2
ΣT

t=1

(
xTt R

−1xt − xTt R
−1Cyt − yTt C

TR−1xt + yTt C
TR−1Cyt

))
δ{·}
δR−1

(
−1

2
ΣT

t=1

(
xTt R

−1xt − xTt R
−1Cyt − yTt C

TR−1xt + yTt C
TR−1Cyt

))
= −1

2
ΣT

t=1(xtx
T
t − xty

T
t C

T − Cytx
T
t + Cyty

T
t C

T)

17

Setting δ
δR−1 = 0:

T

2
RT =

1

2
ΣT

t=1(xtx
T
t − xty

T
t C

T − Cytx
T
t + Cyty

T
t C

T)

Dividing by T:

Rnew =
1

T
ΣT

t=1(xtx
T
t − xty

T
t C

T − Cytx
T
t + Cyty

T
t C

T) (11)

As from lecture notes for Cnew derivation:

Cnew =
(
Σtxt⟨yt⟩T

) (
Σt⟨ytyTt ⟩

)−1

Substituting Cnew in expression CytyTt CT :

T∑
t=1

Cnewyty
T
t C

T
new = Cnew

(
T∑

t=1

yty
T
t

)
CT

new

=

(
T∑

t=1

xty
T
t

)(
T∑

t=1

yty
T
t

)−1(T∑
t=1

yty
T
t

)(T∑
t=1

yty
T
t

)−1
T (

T∑
t=1

xty
T
t

)T

=

(
T∑

t=1

xty
T
t

)(
T∑

t=1

yty
T
t

)−1(T∑
t=1

ytx
T
t

)

= Cnew

(
T∑

t=1

ytx
T
t

)

where: Cnew =
(∑T

t=1 xty
T
t

)(∑T
t=1 yty

T
t

)−1

. Substituting this into equation 11:

Rnew =
1

T

[
T∑

t=1

xtx
T
t −

(
T∑

t=1

xty
T
t

)
CT

new

]

Update for Qnew:

M-step for Q:

p(yt+1|yt) ∝ exp

{
−1

2
(yt+1 −Ayt)

TQ−1(yt+1 −Ayt)

}
The goal to maximize the expected log likelihood with respect to Q, given estimates of yt and A:

Qnew = argmax
Q

〈
T∑

t=2

ln p(yt|yt−1)

〉
q

Same as for Rnew, since log probability of Gaussian distribution is given by:

ln p(yt|yt−1) = ln

(
(exp(−1

2
(yt −Ayt−1)

TQ−1(yt −Ayt−1))

)
− 1

2
ln |det(Q−1|

ln

(
(exp(−1

2
(yt −Ayt−1)

TQ−1(yt −Ayt−1))

)
= −1

2
(yt −Ayt−1)

TQ−1(yt −Ayt−1))

The normalization constant term becomes:

T − 1

2
ln |det(Q−1)|

Combining these results to gain expression for log ikelihood for entire dataset:

ΣT
t=2 ln(yt|yt−1) =

T − 1

2
ln |det(Q−1)| − 1

2
(yt −Ayt−1)

TQ−1(yt −Ayt−1))

18

The quadratic term, when expanded becomes:

−1

2
(yt −Ayt−1)

TQ−1(yt −Ayt−1)) = −1

2
ΣT

t=2(y
T
t Q

−1yt − yTt Q
−1Ayt−1 − yTt−1A

TQ−1yt + yTt−1A
TQ−1yt−1)

Using the same Equations 9 & 10:

δ

δQ−1
(ΣT

t=1lnp(yt|yt−1)) =
T − 1

2
QT+

δ{·}
δQ−1

(
−1

2
ΣT

t=2

(
yTt Q

−1yt − yTt Q
−1Ayt−1 − yTt−1A

TQ−1yt + yTt−1A
TQ−1yt−1

))
δ{·}
δQ−1

(
−1

2
ΣT

t=2

(
yTt Q

−1yt − yTt Q
−1Ayt−1 − yTt−1A

TQ−1yt + yTt−1A
TQ−1yt−1

))
= −1

2
ΣT

t=2(yty
T
t − yty

T
t−1A

T −Ayt−1yt +Ayt−1y
T
t−1A

T)

Setting δ
δQ−1 =0:

T − 1

2
QT =

1

2
ΣT

t=2(yty
T
t − yty

T
t−1A

T −Ayt−1yt +Ayt−1y
T
t−1A

T)

Dividing by T − 1:

Qnew =
1

T − 1
ΣT

t=2

(
(yty

T
t − yty

T
t−1A

T −Ayt−1yt +Ayt−1y
T
t−1A

T)
)

(12)

As from lecture notes for Anew derivation:

Anew =
(
Σt=2⟨ytyTt−1⟩

) (
Σt=2⟨ytyTt−1⟩

)−1

Substituting Anew into expression Ayt−1y
T
t−1A

T :

T∑
t=2

Anewyt−1y
T
t−1A

T
new = Anew

(
T∑

t=2

yt−1y
T
t−1

)
AT

new

=

(
T∑

t=2

yty
T
t−1

)(
T∑

t=2

yty
T
t−1

)−1(T∑
t=2

yt−1y
T
t−1

)(T∑
t=1

yty
T
t−1

)−1
T (

T∑
t=2

yty
T
t−1

)T

=

(
T∑

t=2

yt−1y
T
t

)(
T∑

t=2

yt−1y
T
t−1

)−1(T∑
t=2

yt−1y
T
t

)

= Anew

(
T∑

t=2

yt−1y
T
t

)

where: Anew =
(∑T

t=2 yt−1y
T
t

)(∑T
t=2 yty

T
t

)−1

. Substituting this into equation 12:

Qnew =
1

T − 1

[
T∑

t=2

yty
T
t −

(
T∑

t=2

yt−1y
T
t

)
AT

new

]

19

EM on ssm_spin.txt training data

(a) Log-likelihood over 50 iterations under true
parameters (b) Log-likelihood over 50 iterations

(c) Log-Likelihood over 100 iterations

Figure 7: Log-likelihoods values computed of 50&100 EM iterations for LGSSM with ssm_spins.txt training
data

From Figure 6(a), even if the initial parameters are true parameters, the EM algorithm still undergoes a few
iterations to ensure that it haws reached a point of convergence. This is due to the iterative refinement and
relies on the convergence criteria which is placed in the Appendix Code for this question. The EM algorithm,
even with true parameters, it is common for initial fluctuation in log-likelihood as it refines the estimates.
Additionally, it could be the stochastic nature of the data. From the first figure above, all the curves exhibit
a steep increase with 10 different random initial conditions during the initial iterations. This indicates that
EM algorithm makes significant improvements to parameter estimates in the early iterations. Similar trends
are seen with the log-likelihoods in 50 iterations and 100 iterations, EM algorithm still converges between
15-30 iterations.

c) EM on ssm_spins_test.txt test data
EM on ssm_spins_test.txt test data

20

(a) Log-likelihood over 50 iterations under true
parameters (b) Log-likelihood over 50 iterations (10 random choices

(c) Log-likelihood over 100 iterations (10 random choices)

Figure 8: Log-likelihoods values computed of 50&100 EM iterations for LGSSM ssm_spins_test.txt test
data

In, Figure 8(a), depicting the test data, shows a sharp increase in log-likelihood in the initial iterations,
which then levels off, much like the training data. However, the log-likelihood in the test data doesn’t reach
the same height as in the training data, which is common since models usually fit better to the data they
were trained on. Nonetheless, the increase and leveling off indicate that the model, with parameters learned
from the training data, generalizes to the test data, capturing its underlying structure. In this Figure, the
EM algorithm converges later than when it is run on the training data as there is a less steep curve as
compared to Figure 7(a).

In both figures, the log-likelihood values indicate the EM algorithm’s effectiveness in parameter estima-
tion. With each iteration, the algorithm refines the estimates of the model parameters to better fit the
data, reflected in the increasing log-likelihood values. The plateauing effect illustrates the convergence of
the algorithm, where further iterations do not significantly increase the fit of the model to the data, as
measured by the log-likelihood. This suggests that the EM algorithm has effectively learned the parameters
that best represent the underlying process that generated the data. The behavior in the test data confirms
that the learned model is not just memorizing the training data but also capturing general features that can
be applied to unseen data.

Problem 5: Decrypting Messages with MCMC

a) ML Estimates Formulae & Probability Estimates
Model given, so that each symbol is independent of the preceding text given only the symbol before:

p(s1, s2, ..., sn) = p(s1)Π
n
i=2p(si|si−1)

21

Letting Ŝ be the set of all symbol and C = |Ŝ| be the cardinality of Ŝ. This also means k is the number of
symbols.
Let N : Ŝ → N+ be the count of number of occurrences of symbols and pairs in "war-and-peace.txt".
The transition matrix ψ ∈ Rk×k satisfies:

p(si = α|si−1 = β) = ψ(α, β)

=
N (αβ)

Σβ∈ŜN (β)

=
N (αβ)

N (β)

We can define a transition matrix T, where Tij is probability of state i transitioning to state j. As denoted
from above, there are Ŝ states and we have the following constraints:

ΣŜ
j=1Tij = 1 (13)

Therefore,
logP (S) = logP (S1 = t) + Σi,jnij log(Tij)

From N : Ŝ → N+ be the count of number of occurrences of symbols and pairs, nij os number of times
i→ j. The Lagrange functions become:

L(T) = logP (S1 = t) + Σi,jnij log(Tij)− ΣS
i=1

(
λi(Σ

S
j=1Tij−1)

)
Deriving the Lagrange function with respect to Tij :

δL(T)
δTij

=
nij
Tij

− λi = 0

To get Tij :
Tij =

nij
λi

Since the constraints 13:
ΣS

j=1

nij
λi

= 1

Multiplying by λi:
λi = ΣS

j=1nij

Substituting back into the transition matrix Tij :

Tij =
n− ij

ΣS
j=1nij

hence, this gives the transition probability by ML estimation. To solve for the stationary distribution ϕ of
the Markov chain, let’s denote ϕ = [ϕ(u),ϕ(S)] as stationary distribution, and T as the transition matrix
with elements Tij . The relationship of ϕ and T can be expanded into a system of linear equations:

ϕ(u)Tu1 + ϕ(v)Tv1 + · · ·+ ϕ(S)TS1 = ϕ(1)

ϕ(u)Tu2 + ϕ(v)Tv2 + · · ·+ ϕ(S)TS2 = ϕ(2)

...
ϕ(u)TuS + ϕ(v)TvS + · · ·+ ϕ(S)TSS = ϕ(S)

where each equation corresponds to one state of the Markov chain, and coefficients Tij are the probabilities
of transitioning from state j to state i. In order to solve ϕ, we need to find a vector that satisfies this system
of equations and constraint that probabilities will sum to 1:

ϕ(1) + ϕ(2) + · · ·+ ϕ(S) = 1

22

In matrix form:

[
ϕ(1) ϕ(2) · · · ϕ(S)

]

T11 T12 · · · T1S
T21 T22 · · · T2S
...

...
. . .

...
TS1 TS2 · · · TSS

 =
[
ϕ(1) ϕ(2) · · · ϕ(S)

]

This simplifies to:
ϕT = ϕ

Figure 9: Transition Matrix T: Columns on the x axis represent the current symbol(Si) and Rows on the y
axis represent the Si−1

23

Figure 10: Estimated Stationary Distribution of the symbols

b) Joint Probability given σ

Latent variables σ(s) for different symbols s are not independent. This is because each symbol in plain text
is mapped to a unique symbol in the encrypted text, such as shown here:

σ(a) = s

This indicates that other symbols in the Ŝ = {s1, s2, s3.....Sn} cannot be equal to s, except for ’a’ which
belongs in the Ŝ dataset.

σ(si) ̸= s

In this case, let us denote:
{s1, s2, s3.....Sn} = decryptedtext

{e1, e2, s3.....en} = encryptedtext

σ = en → sn

Initial probability is denoted as:
P (e1|σ) = ϕ(σ−1(e1))

where ϕ is stationary distribution of decrypted symbols and σ−1 is inverse mapping the encrypted symbol
back to decrypted symbol.
Transition probability is denoted as:

P (ei|ei−1, σ) = Tσ−1(ei−1σ−1(ei))

Joint probability of encrypted text given permutation σ is:

P (e1, e2, s3.....en|σ) = (e1|σ)Πn
i=2P (ei|ei−1, σ)

P (e1, e2, s3.....en|σ) = P (e1)

Given these components, the full joint probability expression for encrypted text given the permutation σ is:

P (e1, e2, s3.....en|σ) = ϕ(σ−1(e1))Π
n
i=2Tσ−1(ei−1σ−1(ei))

24

c) Acceptance Probability in MH algorithm
As proposal function S is symmetric, the probability of proposing move from permutation σ to σ′ is the same
as probability of proposing a move from σ′ to σ. Therefore, this can be seen as:

S(σ → σ′) =

{
1

(n2)
if σ ↔ σ′

0 otherwise

Given a current state σ, algorithm proposes a new state σ′ by swapping two symbols at random Likelihood
ϕ(σ) of a permutation σ is probability of observing the encrypted sequence under that key which is written
as:

ϕ(σ) = P (e1|σ)Πn
i=2P (ei|ei−1,σ) (14)

As S(σ → σ′) ↔ S(σ′ → σ):
= P (s1)Π

n
i=2P (si|si−1)

Using Equation 14:
ϕ(σ′)S(σ′ → σ)

ϕ(σ)S(σ → σ′)
=
P (σ′(e1))

P (σ(e1))
ΠN

i=2

P (σ′(ei)|σ′(ei−1))

P (σ(ei)|σ(ei−1))

=
P (σ′(e1))

P (σ(e1))
ΠN

i=2

P (ei|ei−1, σ
′)

P (P (ei|ei−1, σ)

From this above, we can denote it as:

=
ϕ(σ′)S(σ′ → σ)

ϕ(σ)S(σ → σ′)

Therefore, the acceptance probability is:

α = min{1, ϕ(σ
′)S(σ′ → σ)

ϕ(σ)S(σ → σ′)
}

As the proposal probability is symmetric, we can cancel the S(σ → σ′) ↔ S(σ′ → σ):

α = min{1, ϕ(σ
′)

ϕ(σ)
}

d) MH algorithm
For Metropolis Hastings sampler, here I have given the pseudocode to what I coded in order for the decryption
to occur. This summarizes the code I have put in Appendix: Question 5 Code.

25

Algorithm 1 Metropolis-Hastings for Decryption
1: Input: Encrypted message, reference text ’War and Peace’, symbols file
2: Output: Decrypted message
3: procedure Initialize
4: Load encrypted message and symbols
5: Analyze frequencies in message and reference text
6: Map common symbols between them
7: Prepare transition matrix Tnorm from reference text
8: procedure MetropolisHastings
9: Start with initial permutation from frequency analysis

10: for each iteration do
11: Propose new permutation by swapping symbols
12: Calculate and compare log-likelihoods
13: Accept new permutation if likelihood is higher
14: if iteration is a multiple of 100 then
15: Preview decryption
16: Record best score and permutation
17: procedure Output
18: Decrypt message using best permutation
19: Display decrypted message

The first run of my code didn’t converge until 15200 iterations. Therefore, to make MH sampler more
efficient, we used the transition matrix to see how letters are commonly arranged in the language. The
algorithm now has a map as a guide that tells it which symbol in the encrypted message corresponds to the
alphabet. It then tries many different combinations, making small changes each time (like swapping two
letters around), to find the best match. It scores each attempt by how much it resembles the expected lan-
guage structure and keeps track of the highest score. Furthermore, we used multiple initialization attempts,
each time tracking the highest likelihood score achieved. The permutation with the overall highest score
across these attempts was considered the best solution, yielding the most sensible decryption. This multi-
initialization attempt was to aid in the potential problem of converging to local optima, instead directing
the search toward the global optimum in the space of possible decryption. Both the original attempt code
and the "smart initialization" code are placed in the Appendix below (Appendix: Question 5)

26

Figure 11: 6000 iterations for decrypting text ending with Metropolis Hastings algorithm; Best Decryption:
in my younger and more vulnerable years my father gave me so

27

e) Ergodicity
ψ(α, β) does affect the ergodicity of the chain. When some transition probabilities are 0, this indicates that
some states cannot be reached from others. This does not necessarily violate ergodicity, as long as there is
an indirect path between every pair of states and the chain can still visit all states with non-zero probability
in the long run. The proof for ergodicity, in the context of this question, involves several steps. Given the
structure of our Markov chain and transition probabilities, we need to prove that the Markov chain is both
irreducible and aperiodic.

Irreducibility Proof

• Let Σ be finite set of all symbols

• Let S be the state space of Markov chain, where each state s ∈ S corresponds to permutation of
symbols in Σ

• Let T be transition matrix obtained by MLE, where Tij is probability of transition from state i→ j

We must show for every pair of states α, β ∈ S, there exists a non-zero probability path from α to β.
This can be a sequence of intermediate states.
Given any two permutations α and β, through series of swaps, each is a valid transition in the Markov chain.
:

Σ = |n|

where n is a finite number of symbols, the number of required swaps is finite. Such as in War and Peace
text, transition probabilities Tij are derived from observed frequencies of symbol pairs with smoothing terms
added to ensure all Tij ≥ 0. Through MH algorithm, the probability of proposing any swap is positive. We
construct a sequence of states from α to β:

α1, α2, α3, ..., αk

Thus, probability of any permutation through a finite number of swaps is non-zero.

P (α→ β) = P (α→ α1)P (α1 → α2).....P (αk−1 → β) ≥ 0

Thus, Markov chain is irreducible.

Aperiodicity Proof

A state α ∈ S is aperiodic if greatest common divisor GCD of all possible return times to α is 1. To prove
aperiodicity, we need to show that for any state α, there is a positive probability of returning to α, there is
a positive probability of returning to α at times that are not multiples for some k > 1.
Define d(α) as period of state α which is the greatest common dividor of all n such that Tn

αα > 0. In MH
algorithm, as proposal is symmetric, to propose a swap back to original α, it is possible to have:

Tαα > 0

Hence, every state α is aperiodic. Hence:

• Irreducibility: ∀α, β ∈ S, ∃P : P (α→ β) > 0

• Aperiodicity: ∀ alpha ∈ S, gcd{n > 0|Tn
αα > 0} = 1

f) Different Approaches to decoding
Symbol Probabilities alone:

This is not sufficient. It does not account for context or order of symbols. In English, pairs of letters occur
with high frequency which this model cannot exploit.

28

2nd Order Markov Chain:

In the 1st order Markov chain, we have a transition matrix P where Pij is probability of transitioning from
i→ j:

P = [Pij]; i, j ∈ {1, 2,n}
Matrix dimensions for n states are n× n. For a 2nd order markov chain:

P = [Pijk]; i, j, k ∈ {1, 2,n}

Transition probabilities for 2nd order:

P (St|St−1 = sj , St−2 = si) = Pijk

Therefore:
Numberofparameters = n3

This becomes a tensor representation:
P ∈ Rn×n×n

For 2nd order MC, this does work, but this complexity can be prohibitive for large symbol sets or when
computational resources are limited.

Encryption Scheme with Non-unique Mappings:

Two symbols mapped to same encrypted value, this does not work. Let’s denote:

• Σ as the set of all plaintext symbols.

• E as the set of all encrypted symbols.

• σ : Σ → E as the encryption function.

• σ−1 : E → 2Σ as the decryption function, where 2Σ denotes the power set of Σ due to non-unique
mappings.

For non-unique mappings:

∃s1, s2 ∈ Σ, s1 ̸= s2 : σ(s1) = σ(s2) = e

For decryption with ambiguity:

σ−1(e) = {s1, s2}
For likelihood of a decryption:

P (S = s | E = e)

If σ−1 is not a function but a relation due to non-unique mappings, the likelihood must consider all
mappings:

P (S = s1 | E = e) = P (S = s2 | E = e)

This results in a set of possible plaintexts for each encrypted symbol:

∀e ∈ E, σ−1(e) is not a singleton

The decryption process must then consider all combinations:

P (S1S2 . . . Sn | E1E2 . . . En) =
∑

(s′1,s
′
2,...,s

′
n)∈σ−1(E1)×σ−1(E2)×...×σ−1(En)

P (S1 = s′1, S2 = s′2, . . . , Sn = s′n)

This sum will run over all combinations of possible symbols to each encrypted symbol, leading to endless
combinations as number of symbols increases.

29

Chinese Language:

This would not work with Chinese. There are too many symbols where > 10000 and computational power
is limited. Let Σ represent the set of Chinese characters with cardinality |Σ| = N .

State space size for substitution cipher:
|S| = N !

Mapping space:
|M | = (N − 1)N

First-order transition matrix size:
|T | = N2

Second-order transition tensor size:
|T2| = N3

Iterations for convergence (minimum):

Itermin ∝ |S| = N !

Corpus size for accurate transition probabilities estimation:

Corpussize ∝ N2 (first-order)

Corpussize ∝ N3 (second-order)

Computation time - 1 iteration:
O(N2) (matrix operations)

Total computation time:
O(N2 ·N !)

Given factorial growth of state space, and cubic growth of transition tensor, computational resources are
insufficient for this large N.

Problem 6: Implementing Gibbs Sampling for LDA

a) ToyExample.data
The code for the graphs below are as attached in Appendix: Question 6. In the python code file gibbs_sampler.py,
there were 6 todos that had to be implemented in order to achieve the graphs in part 6a). The functions
that needed to be implemented are as documented below.

30

Figure 12: Standard Gibbs Sampler implemented on toyexample.data training set

Figure 13: Standard Gibbs Sampler implemented on toyexample.data test set

31

Figure 14: Collapsed Gibbs Sampler implemented on toyexample.data training set

Figure 15: Collapsed Gibbs Sampler implemented on toyexample.data test set

From Figure 11 and 12 above, roughly around 20-30 iterations, the log likelihood of the training and test
data with standard Gibbs sampling reaches around -270 and -33 respectively before they fluctuate repeated
for 180 iterations. In Figure 13, with Collapsed Gibbs Sampling on the training data, it increased rapidly
until around 15-20 iterations, and fluctuates around that value at -300 approximately for 180 iterations. In
Figure 14, it was fluctuating repeatedly for the 200 iterations.

32

b) Autocorrelation

Figure 16

33

Figure 17

In this question, I increased the number of iterations for Standard and Collapsed Gibbs Sampling to 2000
iterations to reduce noise in the autocorrelation plots as shown below. Intuitively, we discarded 30 burnin
iterations and plotted the autocorrelations as shown above. From the autocorrelation plots, the samples are
less correlated and have reached point of fluctuations where the Markov chain provides representative set
of samples from posterior distribution. From Figure 17 for Collapsed Gibbs Sampler, autocorrelation drops
sharply and fluctuates around 0 quickly suggesting burnin period is short. For Figure 16, in Standard Gibbs
Sampler, burnin period is alot longer than Collapsed. It takes an estimate of more than 10 iterations to
start fluctuating around zero. About 20-40 samples will be required for the Gibbs sampler until we have a
representative set of samples from the posterior. This is because autocorrelation drops below 0.1 within the
first 50 lags of both Gibbs samplers and for the Collapsed Gibbs Sampler, this is even lower from the start,
which means that it requires a shorter burn-in. However, to further improve this to obtain a representative

34

set from the posterior, I could have sampled every 10 iterations to reduce autocorrelation further.

c) Gibbs Sampler Convergence
The Collapsed Gibbs Sampler converges faster. Comparing Figure 16 and 17, Collapsed Gibbs Sampler’s
training and test autocorrelation plots show very low initial values that stabilize and fluctuate around 0,
indicating a faster convergence as compared to the Standard Gibbs Sampler. This could also be because
Collapsed Gibbs Sampler integrates out one of more variables (topic assignments), leading to reduced state
space. The resulting Markov chain demonstrates higher convergence at early lags, suggesting each iteration
provides a more independent sample from posterior distribution.

d) Varying parameters
Varying α

Figure 19: Log-likelihoods of training and test data with standard Gibbs Sampler and Collapsed Gibbs
Sampler, with varying alpha values

35

For test set, from the above figures, show mixed results. Standard Gibbs Sampler shows better performance
with α = 1 while Collapsed Gibbs has a less clear pattern. The model α = 1 seems to generalize better in the
standard Gibbs. Noting that higher log likelihood on test set indicates better generalization and predictive
performance, means that our values at lower alpha achieve better performance. A higher alpha suggest that
each document is likely to contain a mixture of most topics. A lower alpha value indicates a document is
more likely to be represented by fewer topics, which results in the fluctuations in log likelihood.

Varying β

Figure 21: Log-likelihoods of training and test data with standard Gibbs Sampler and Collapsed Gibbs
Sampler, with varying beta values

Similarly to α, β behaves the same way on the posterior probability and predictive performance. The beta
parameter influences the word distributions within topics. A lower beta promotes sparser word distributions,
implying that a few words are strongly associated with each topic. Lower beta results in more fluctuations in
log likelihood, indicating model is sensitive to changes in topic-word assembly. The plots suggest that beta=1

36

might offer a reasonable trade-off between these extremes, as indicated by relatively higher log likelihoods
for both training and test sets with the Standard Gibbs Sampler.

Varying K/Number of Topics

Figure 23: Log-likelihoods of training and test data with standard Gibbs Sampler and Collapsed Gibbs
Sampler, with varying K (n_topics)values

In this figure above, where for higher values of K, the model captures more restrictive patterns in the data,
which is indicated in the lower log-likelihood values for higher K on training set. In training set, Standard
Gibbs and Collapsed Gibbs samplers show higher log likelihood for lower K values. This shows maybe a
small K is sufficient to capture the themes of training data. This is the same for the test set. Optimal
number of topics is usually a balance with generalization and not overfitting. Plots suggest that for this
dataset, lower K values are better in predictive performance.

37

Problem 7: Optimization

a) Lagrange Multiplier Method & Local Extrema
In order to find the local extrema of the function f(x, y) = x + 2y subject to constraints y2 + xy = 1.
Lagrange Multiplier Method: We are seeking for points where the gradient of f(x, y) is parallel to
gradient of constraint g(x, y) = y2 + xy = 1. We define the Lagrangian as:

L(x, λ) = f(x)− λ(x)

L(x, y, λ) = f(x, y)− λg(x, y)

L(x, y, λ) = x+ 2y − λ(y2 + xy − 1)

Gradient of L with respect to x, y and λ is denoted as:

∇L(x, y, λ) = 0

This gives us a system of equations of partial derivatives:

δL
δx

= 1− λy (15)

δL
δy

= 2− λ(2y + x) (16)

δL
δλ

= y2 + xy − 1 (17)

From Equation 15 and equating partial derivatives to 0:

λy = 1

λ =
1

y
assumingy ̸= 0

Substituting this λ into Equation 16:

2− 1

y
(2y + x) = 0

x

y
= 0

Given that y ̸= 0, this implies that x=0. Substituting x=0 into constraint equation 17:

y2 + (0)y − 1 = 0

y2 − 1 = 0

y = ±1

Thus, function values local extrema occur are (0, 1) and (0,−1). To determine whether the points are
maxima, minima or saddle points, we use the bordered Hessian matrix for the constrained optimization
problem. Given the Lagrangian:

L(x, y, λ) = x+ 2y − λ(y2 + xy − 1)

Calculating the partial derivatives with respect to x, y and λ:

δ2L
δx2

= 0

δ2L
δy2

= −2λ

38

δ2L
δxδy

=
δ2L
δyδx

= −λ

The constraint function is g(x, y) = y2 + xy − 1, so the partial derivatives are:

δg

δx
= y

δg

δy
= 2y + x

The bordered Hessian H for a problem with 2 variables and 1 constraint is a 3× 3 matrix:
0 ∂g

∂x
∂g
∂y

∂g
∂x

∂2L
∂x2

∂2L
∂x∂y

∂g
∂y

∂2L
∂y∂x

∂2L
∂y2


We’ll evaluate this matrix at the points (0,−1) and (0, 1) and check the determinant of the bordered Hessian:
At the point (0,−1):

H =

 0 −1 −2
−1 0 −λ
−2 −λ −2λ


Remember, λ = 1

y , so at y = −1, λ = −1. Substituting this in:

H =

 0 −1 −2
−1 0 1
−2 1 2


At the point (0, 1): Similarly, λ = 1 for y = 1, so:

H =

0 1 2
1 0 −1
2 −1 −2


Computing the determinant of these matrices to determine the nature of points:
For (0, 1):

det(H) = 0(0− 1(−1))− (−1)(−1(2)− 1(−2)) + (−2)(−1(−2)− 1(0))

det(H) = 0− 2 + 4 = 2

For (0,−1):
det(H) = 0(0− 1(−1))− (1)(1(2)− (−1)(−2)) + (2)(1(−2)− (−1)(0))

det(H) = 0− 2− 4 = −6

Based on this, the function values point (0,1) is a maximum and (0,-1) is a minimum. Plugging these values
into f(x, y):

f(0,−1) = −2

f(0, 1) = 2

Therefore, the local extrema occurs at 2, and -2.

39

b) Newton-Raphson Method
Using Newton-Raphson method to compute ln(a) for a given a ∈ R+, we need to find the root of a function
where f(x, a) is equivalent to solving x in ex = a. We know that ex = a should be satisfied for x = ln(a).
Therefore,

f(x, a) = ex − a

From the above function derived:
f ′(x) =

δ

δx
(ex − a) = ex

The Newton’s Method Update Equation, iteratively finds better approximation to the roots of a real-valued
function. The general form of Newton’s method is:

xn+1 = xn − f(xn)

f ′(xn)

Now substituting f(x, a) and f ′(x) into Newton’s method update formula:

xn+1 = xn − exn − a

exn

xn+1 = xn − 1 +
a

exn

Problem 8: Eigenvalues as solutions of optimization problems

a) sup
x∈Rn

RA(x)

Given a symmetric n× n matrix A, we define RA(x):

qA(x) := xTAx (18)

RA(x) :=
xTAx

xTx
=
qA(x)

||x||2
(19)

To prove:
∃x∗ ∈ Rn

such that RA(x
∗) = sup

x∈Rn

RA(x) where x∗ is the point where RA(x) attains its supremum in Rn.

Consider the unit sphere, which is compact:

Sn−1 = {x ∈ Rn|||x|| = 1}

RA(x
∗) =

qA(x
∗)

||x∗||2
= qA(x∗) =M

as ||x∗|| = 1 For any y ∈ Rn, y ̸= 0, let z = y
||y|| . Then z ∈ Sn−1 and:

Ra(y) =
qA(y)

||y||2
=
qA(z)

||z||2
= RA(z) ≤M

Therefore, RA(x
∗) ≥ RA(y) for all y ∈ Rn, y ̸= 0. x∗ is point where RA(x) attains supremum. Now, to show

that qA(x) is a continuous function at all points x inRn: Let x, xn ∈ Rn :

qA(x)− qA(xn) = xTAx− xTnAxn.

Using linearity and symmetry of A, we expand:

qA(x)− qA(xn) = (x− xn)
TAx+ xTnA(x− xn).

40

Applying the Cauchy-Schwarz inequality:

|qA(x)− qA(xn)| ≤ |(x− xn)
TAx|+ |xTnA(x− xn)|.

As norm is sub-multiplicative,

|qA(x)− qA(xn)| ≤ ∥x− xn∥∥Ax∥+ ∥xn∥∥A(x− xn)∥.

Let M1 = ∥Ax∥ and M2 = ∥xn∥∥A∥ :

|qA(x)− qA(xn)| ≤ ∥x− xn∥M1 + ∥x− xn∥M2.

|qA(x)− qA(xn)| ≤ (∥x− xn∥)(M1 +M2).

Given ϵ > 0,∃δ > 0 such that ∥x− xn∥ < δ implies |qA(x)− qA(xn)| < ϵ. Since qA(x)− qA(xn) can be made
arbitrarily small by taking x sufficiently close to xn, qA(x) is continuous at x0. Since xn is arbitrary, qA(x)
is continuous everywhere in Rn.

b) RA(x) ≤ λ1

Given the eigenvalues of A as λ1 ≥ λ2 ≥ ... ≥ λn and corresponding eigenvectors, {E1, ..., En} which forms
an ONB, we need to prove that for any vector x ∈ Rn, Rayleigh quotient RA(x) ≤ λ1:
With x in terms of ONB of eigenvectors:

x = Σn
i=1(ET

i x)Ei (20)

Using Equation 18:
qA(x) =

(
Σn

i=1(ET
i x)Ei

)T
A
(
Σn

j=1(ET
j x)Ej

)
Expanding using inner product linearity and eigenvalue equation:

AEj = λjEj

qA(x) = Σn
i=1Σ

n
j=1(ET

i x)(ET
j x)ET

i λjEj
With ONB:

ET
i λj = δij

qA(x) = Σn
i=1(ET

i x)
2λi

Now, we compute norm squared x:

||x||2 =
(
Σn

i=1(ET
i x)Ei

)T (
Σn

j=1(ET
j x)Ej

)
= (Σn

i=1(ET
i x)

2

Substituting this into the Rayleigh Quotient formula 19:

RA(x) =
Σn

i=1(ET
i x)

2λi
Σn

i=1(ET
i x)

2

As λ1 is the largest eigenvalue for all i, λi ≤ λ1:

RA(x) ≤
Σn

i=1(ET
i x)

2λi
Σn

i=1(ET
i x)

2
= λ1

Thus, RA(x) ≤ λ1.

41

c) RA(x) < λ1

Given eigenvectors E1, ..., Ek corresponding to eigenvalue λ1, we need to show that for any x ∈ Rn is not in
the span of {E1, ..., Ek}, Rayleigh quotient RA(x) < λ1.
Given Equation for x 20and Rayleigh quotient for a vector is RA(x) 19, for x not in span of {E1, ..., Ek},
there exists some Ej with j > k such that (ET

j x) ̸= 0:

RA(x) =
Σn

i=1λi(ET
i x)

2

(ET
i x)

2

As λ1 is largest eigenvalue for i > k, λi < λ1:

RA(x) =
Σk

i=1λ1(ET
i x)

2 +Σn
i=k+1λi(ET

i x)
2

(Σn
i=1(ET

i x)
2

Focusing on the numerator of the equation:

Σk
i=1λ1(ET

i x)
2 = Σn

i=k+1λi(ET
i x)

2

Since for λi < λ1, the difference is positive:

Σn
k+1(λ1 − λi)(ET

i x)
2 > 0

With the denominator of RA(x) still the same, the Rayleigh quotient is less than 1 because numerator is less
than the denominator due to contribution from i > k. Thus, for x not in span of E1, ..., Ek, RA(x) < λ1.

Appendix

Images & Graphs
1) Learned Probability Vector Images at each run for each component k={2,3,4,7,10}

The code runs EM algorithm for the specified number of mixture components K and then visualizes each
component as an 8× 8 grayscale image after each run.

42

Figure 24: Learned probability vectors as images for k = 2, each run 5 times

43

Figure 25: Learned probability vectors as images for k = 3, each run 5 times

44

Figure 26: Learned probability vectors as images for k = 4, each run 5 times

45

Figure 27: Learned probability vectors as images for k = 7, each run 5 times

46

Figure 28: Learned probability vectors as images for k = 10, each run 5 times

Figure 29: Cluster Mean for k={2,3,4,7,10}

47

2) Running toyexample.data with larger number of iterations n_iter = 2000

Figure 30: Training and test set from ToyExample.data Log-likelihood over 2000 iterations with Standard
Gibbs Sampler to reduce noise

48

Figure 31: Training and test set from ToyExample.data Log-likelihood over 2000 iterations with Collapsed
Gibbs Sampler to reduce noise

Code Execution
All code is implemented in Python through Jupyter Notebook.

49

Question 1: Code

Figure 32: Learned probability vectors as images for k = {2, 3, 4, 7, 10}, each run 5 times

50

Figure 33: Learned probability vectors as images for k = {2, 3, 4, 7, 10}, each run 5 times

51

Question 2: Code

Figure 34: Learned probability vectors as images for k = {2, 3, 4, 7, 10}, each run 5 times

52

Question 3: Code

Figure 35: Learned probability vectors as images for k = {2, 3, 4, 7, 10}, each run 5 times

53

Figure 36: Learned probability vectors as images for k = {2, 3, 4, 7, 10}, each run 5 times
54

Figure 37: Code written for Learned Probability Vector Images at each run for each component
k={2,3,4,7,10}

Figure 38: Code written computing responsibilities πk where k={2,3,4,7,10}

55

Figure 39: Code written computing size of gzip compressed file and naive encoding length file and log-
likelihood

56

Figure 40: Code written ccomputing total encoding costs with increasing k components where k={2,3,4,7,10}

57

Question 4: Code

Figure 41: Code written plotting the Kalman Filtering and Smoothing plots in Q4a

58

Figure 42: Code written computing loglikelihood under true parameters, with EM algorithm for 50 iterations,
adapted by changing X_train with X_test (code omitted as it was just changing X_train attribute to
X_test)

59

Figure 43: Code written computing loglikelihood under with 10 random choice generations for 50 and 100
iterations, number of iterations manually changed in the code, and also adapted by changing X_train with
X_test (code omitted as it was just changing X_train attribute to X_test)

60

Question 5: Code

Figure 44: Code written plotting the Symbol Transition Map in Q5a

61

Figure 45: Code written computing stationary distribution for all the symbols for 5a) from mathematical
derivation in assignment 5a)

62

Figure 46: Code written for Metropolis Hastings algorithm implementation

63

Figure 47: Code written for Metropolis Hastings algorithm implementation- smart initialization

64

Question 6: Code

Figure 48: Code written for First Todo: Sample a topic for each (doc, word) and update A_dk,
B_kw correspondingly in Standard Gibbs Sampling Python Code

Figure 49: Code written for for Second Todo: Sample everything from self.rang_gen to control the
random seed (works as numpy.random). Third Todo: sample theta and phi in Standard Gibbs
Sampling Python Code

65

Figure 50: Code written for for 4th Todo: Implement Log-like in Standard Gibbs Sampling Python Code

66

Figure 51: Code written for for 4th Todo: Implement Log-like in Collapsed Gibbs Sampling Python Code

67

Figure 52: Code written for 6b: Autocorrelation plots

68

Figure 53: Code written for 6d: Code for modifying different parameters α, β,K and plotting log-likelihood

69

	Problem 1: Models for binary vectors
	a) Inappropriate model: Multivariate Gaussians
	b) ML estimator for lambda
	c) MAP estimator for lambda
	d) ML parameters of Multivariate Bernoulli
	e) MAP parameters: lambda

	Problem 2: Model Selection
	a) lambda
	b) lambda
	c) lambda

	Problem 3: EM for Binary Data
	a) Likelihood of mixture of K multivariate Bernoulli distributions
	b) lambda
	c) Maximizing Parameters of lambda
	d) Log Likelihood for different K
	e) Responsibilities, Cluster Means & Probability Vector Images
	f) GZip & Naive Encoding
	g) Total Encoding Cost

	Problem 4: LGSSMs, EM and SSID
	a) Kalman Filter & Kalman Smoother
	b) EM on ssm_spin.txt training data
	Update for Rnew:
	Update for Qnew:

	c) EM on ssm_spins_test.txt test data

	Problem 5: Decrypting Messages with MCMC
	a) ML Estimates Formulae & Probability Estimates
	b) Joint Probability given
	c) Acceptance Probability in MH algorithm
	d) MH algorithm
	e) Ergodicity
	Irreducibility Proof
	Aperiodicity Proof

	f) Different Approaches to decoding
	Symbol Probabilities alone:
	2nd Order Markov Chain:
	Encryption Scheme with Non-unique Mappings:
	Chinese Language:

	Problem 6: Implementing Gibbs Sampling for LDA
	a) ToyExample.data
	b) Autocorrelation
	c) Gibbs Sampler Convergence
	d) Varying parameters
	Varying lambda
	Varying lambda
	Varying K/Number of Topics

	Problem 7: Optimization
	a) Lagrange Multiplier Method & Local Extrema
	b) Newton-Raphson Method

	Problem 8: Eigenvalues as solutions of optimization problems
	a) lambda
	b) lambda
	c) lambda

	Appendix
	Images & Graphs
	1) Learned Probability Vector Images at each run for each component k={2,3,4,7,10}
	2) Running toyexample.data with larger number of iterations n_iter= 2000

	Code Execution
	Question 1: Code
	Question 2: Code
	Question 3: Code
	Question 4: Code
	Question 5: Code
	Question 6: Code

