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Abstract

Contrastive decoding is a lightweight and ef-
fective inference-time method that improves
the quality of text generation in Large Lan-
guage Models. However, algorithms such as
DoLa (Decoding by Contrastive Layers) have
only been implemented in decoder-only archi-
tectures and studied for their impact on improv-
ing factuality. This work adapts DoLa for the
T5 and FLAN-T5 model families and evalu-
ates its impact on the models’ instruction fol-
lowing capabilities, which to our knowledge is
the first implementation of a contrastive decod-
ing strategy in an encoder-decoder architecture.
Our results show that DoLa improves the faith-
fulness of open-text generation for certain cat-
egories of tasks and harms others. To under-
stand these results, we present an analysis of
the layer-by-layer logit evolution in a FLAN-
T5 model called "Token Tracking" to quantify
DoLa’s impact on token output probabilities.

1 Introduction

Large Language Models (LLMs) have exhibited great
capability in generating human-like text across a
spectrum of topics and styles, and are used for a vari-
ety of tasks including question answering, content
generation, and complex chain-of-thought-reasoning.
However, even state-of-the-art models can hallucin-
ate, or in other words, generate text that lacks fac-
tuality (according to its training data) or faithfulness
(according to the input prompt and data) [1]. While
LLM hallucination has multifaceted origins that range
anywhere from pre-training to model design, recent
work by Chuang et al. [2] has shown that Decoding by
Contrastive Layers (DoLa), an inference-time decod-
ing strategy where tokens are selected by contrasting
predictions made by intermediate model layers, can
reduce factuality hallucinations in LLMs.

In particular, DoLa takes advantage of the mod-
ular nature of knowledge encoding [3, 4] within
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transformer-based LMs. By manipulating how out-
puts from different layers are combined during decod-
ing, DoLa exploits the inherent structure of LLMs to
reduce hallucinations without fundamentally altering
the underlying model architecture or training proced-
ure. For example, since knowledge neurons have been
shown to exist in the top layers of LLM’s, contrasting
the final layer with an intermediate layer before this
knowledge injection can ensure that the output logits
correctly weight this later information. DoLa con-
sistently improves truthfulness and performance of
LLaMA models by 12-17% on TruthfulQA (a truth-
fulness benchmark), demonstrating its effectiveness
in reducing factuality hallucinations [2].

However, the mechanics of faithfulness hallucin-
ations are less understood. One way to benchmark
faithfulness is to evaluate models on datasets of tasks
with language-based constraints and judge their abil-
ity to follow the provided instructions. Some of these
tasks have been shown to demonstrate properties of
inverse scaling, where the performance of larger mod-
els are worse than that of their smaller analogues,
reflecting a tendency of LLMs to memorize training
data. To explore the potential effect of DoLa on faith-
fulness, we selected two instruction following data-
sets from the Hallucinations Leaderboard [5], Memo-
Trap and IFEval, to evaluate our models.

Furthermore, given that encoder-decoder mod-
els like FLAN-T5 have demonstrated impressive
instruction-following performance with much fewer
parameters and greater computation efficiency, we de-
cided to integrate and evaluate DoLa on the T5 family
and explored its impact on FLAN-T5 in the realm of
instruction following.

2 Literature Review

2.1 Instruction Following
LLM’s often need to follow complex instructions
to produce contextually appropriate and accurate re-
sponses that align with task requirements and user ex-
pectations. Instruction following can be thought of as
zero-shot learning, where a model’s language mod-
eling ability is used to perform tasks like sentiment



Figure 1: Schematic representation of how dynamic premature layer selection (DoLa) works with T5 architectures; this
illustration is for FLAN-T5 and T5 -large architectures, where they have 24 encoder and decoder layers; different sized
models have different sized layers as explained in Section 4.3.

classification without needing to explicitly train the
model for those tasks [6]. Successful instruction fol-
lowing can vastly extend the capabilities of a model.
In 2021, Chung et al. [7] introduced an “instruction
finetuning” procedure called FLAN, which uses a
wide range of instruction templates and data to fine-
tune models to be better starting points for new tasks.
These FLAN models show a significant performance
gain on held-out training tasks. Since MemoTrap and
IFEval were not in the instruction tuning data used
to create the FLAN-T5 family, we can consider this
work a study of zero-shot instruction following per-
formance.

2.2 Contrastive Decoding Methods

Contrastive decoding has become a popular method
to improve the text generation capability of lan-
guage models. One class of methods contrasts pre-
dictions between models. Gera et al. [8] intro-
duces a token-level probability distribution adjust-
ment method which enhances the accuracy of LMs
by contrasting predictions from an expert and amateur
model with the same architecture. Xiang et al. [9] use
a similar method with an additional plausibility con-
straint that tunes how much contrasting is used de-
pending on the confidence of the expert model. Out-
side the expert-amateur model paradigm, Shi et al.
[10] contrasts the output distribution of the a model
when it is used with and without the full context
of the token history. Finally, DoLa contrasts logits
within a single model between the final layer and a
dynamically chosen “early-exit” layer at inference-

time, requiring no additionally training and allowing
for flexible application to pre-trained models. Many
of the decoding approaches in the literature thus far
[2, 8, 9, 10, 11, 12, 13] have been implemented on
autoregressive and/or causal LMs such as BERT [14],
GPT [15], and LLaMA [16, 17] models instead of
seq2seqLMs [18] such as FLAN-T5 [7] and T5 [19],
which have an encoder-decoder architecture. Thus,
our implementation of DoLa for the T5 family is not
only a study of contrastive decoding for instruction
following but also extends this technique to encoder-
decoder architectures as a whole.

2.3 LLaMA (decoder-only) vs. T5 architecture
(encoder-decoder)

The LLaMA family uses causal decoder-only archi-
tectures trained as traditional language models to pre-
dict next tokens given an input sequence. These
models do not have independent means of processing
or representing input sequences and target sequences
differently, but their unidirectional attention mechan-
ism and language modeling capability [20] have non-
etheless proven highly effective for generative tasks
that require coherent and human-like text [21].

The T5 family, on the other hand, utilizes encoder-
decoder architecture as shown in Figure 1. The en-
coder is presented with an input sequence of tokens,
which could be a sentence in English to translate to
German, and outputs a sequence of embeddings that
captures the information from the input tokens. The
decoder then takes over to autoregressively predict the
target sequence, which in our example, generates the



translation one token at a time using the previously
generated tokens as context for each new prediction.
The decoder includes cross-attention layers which al-
low each block in the decoder to pay attention to out-
put of encoder, allowing it to access the information
in the input as it generates the translation. While the
decoder has access to the encoder’s full output, within
its own layers, it uses a causal masking pattern [22]
similar to LLaMA’s decoder-only architecture. This
means that when generating a token, the decoder can-
not use information from future tokens in the target
sequence. This masking is crucial during training to
ensure that model does not cheat by using future in-
formation to predict the current token.

There are several ongoing studies that provide
comparisons between decoder-only and encoder-
decoder architectures [23, 24, 25, 26] with mixed res-
ults. Raffel et al. [19] demonstrated that encoder-
decoder models outperform decoder-only LLMs for
transfer learning (where a pretrained model is fine-
tuned on single downstream task). Liu et al. [27]
found that encoder-decoder model architectures make
better use of their context windows because their bid-
irectional encoder permits processing input document
in context of future documents, potentially improving
relative importance estimation between documents.
However, Wang et al. [26] found that causal decoder-
only models trained on an auto-regressive language
modeling objectives exhibit the strongest zero-shot
generalization after unsupervised training. In our
work, we seek to understand whether DoLa can be ef-
fective for encoder-decoder architectures given their
relative sparsity of parameters and unique architec-
ture.

3 Methodology

3.1 DoLa Implementation with T5

As DoLa was originally designed for the LLaMA-v1
family of models, we had to implement DoLa in ver-
sion 1.1 of the T5 family (T5v1.1) [19] of the Hug-
gingFace transformers package. We also needed to
modify the generation utils of the transformer pack-
age for our logit analysis of the early exit layers.

While T5 is trained with unsupervised
denoising, our implementation utilizes the
T5ForConditionalGeneration class, which
includes a language modeling head on top of the
decoder. Here, portions of the input sequence are
masked by sentinel tokens (unique mask tokens),
which the model learns to predict based on the
surrounding context. We distinguish the differing
training objectives between T5 and LLaMa, masked
language modeling (MLM) and casual language

modeling (CLM), in the experimental setup in Figure
2. Notably, we have implemented the contrastive
decoding solely in the decoder module of T5.

3.2 Dynamic Contrastive Premature Layer
Selection (DoLa)

This section serves as a summary of Chuang et al.
[2]’s work, which describes the mechanism of DoLa
in detail. Traditionally, the next-token distribution of
T5 is taken directly from the final layer of the de-
coder. However, given the complexity of the attention
mechanism and the increasingly abstracted context,
the final layer may not represent the best next-token
prediction, particularly if the intermediate outputs of
the layers are changing dramatically. This is where
DoLa becomes significant – by dynamically select-
ing the most informative premature layer, or the layer
with the greatest contrast to the final mature layer, we
can ensure that we surface the best information that
emerges and are not overly influenced by earlier, more
naive predictions.

In the selection process, we use the Jensen-
Shannon Divergence (JSD), a symmetric measure of
distance derived from the Kullback-Leibler Diver-
gence, to measure distance between the layers. Given
previous tokens x<t, the log probabilities of the next
token in layer j ∈ J of all the early exit layers can be
represented as qj(·|x<t). Thus, for mature layer N ,
we can define our distance metric d as:

d (qN (·|x<t), qj(·|x<t)) = JSD (qN (·|x<t)∥qj(·|x<t))

The layer with the max JSD is chosen as our chosen
premature layer M :

M = argmax
j∈J

(d(qN (·|x<t)∥qj(·|x<t)))

The output from the mature layer is then adjusted
relative to the premature layer M , amplifying the con-
tribution of tokens that are contextually relevant and
downplaying those that are not. This is executed by
contrasting the log probabilities of the token distri-
butions from the premature and mature layers using
a softmax function, which normalizes these probab-
ilities into a proper distribution. Thus, the final pre-
dicted probability distribution p̂ over the vocabulary
to sample the next token xt is:

p̂(xt|x<t) = softmax(F(qN (xt), qM (xt))) (1)

where F adjusts the output probability of a token to
log qN (xt)

qM (xt)
if token xt has sufficiently high probability

in the output layer qN or to −∞ otherwise. This en-
sures that our output distribution does not over-weight
low-probability tokens purely due to contrasting, and
that the final output distribution retains sufficient sig-
nal from the original mature layer distribution.



Figure 2: Experimental setup to evaluate the impact of DoLa on instruction-following tasks without fine-tuning. We
compare two types of models: MLM-Baseline, the standard pre-trained T5 encoder-decoder models and MLM-DoLa,
T5 models that apply the decoding by contrastive layers approach. The efficacy of DoLa is assessed for instruction
following in zero-shot settings on the IFEval and MemoTrap datasets described in Section 4.2. * indicates tested models

3.3 Repetition Penalty

To mitigate the tendency of language models to pro-
duce repetitive text, we incorporate a repetition pen-
alty [28] of θ = 1.2 during the decoding process.
Prior work [29] and recent findings by [30] have
demonstrated the effectiveness of this specific value
in reducing repetition during generation of extended
text sequences, particularly in tasks requiring chain-
of-thought reasoning. While this allowed our model
to avoid looping outputs in general, we still saw some
evidence of undesirable repetition in model outputs
with specific prompts.

3.4 Prompt Tuning

As T5 models frame all tasks as text generation prob-
lems, we can simulate the classification setting by
asking our model to generate a sequence of tokens
representing the class label to make a selection [7].
Our prompt will thus require additional contextual
tokens P to the dataset input to guide the model’s
generation towards the correct output. With prompt
tuning, we can set and experiment with the content
of our prompts (θP ), which we can then optimize to
improve model performance without additional train-
ing. To craft our final prompts, we were guided by
design considerations introduced by Lester, Al-Rfou
and Constant [31], which helped inform the syntax
and length of our prompts. The IFEval and Memo-
Trap datasets specified that they are meant to be used
in a zero-shot setting. The original DoLa authors, on
the other hand, use in-context learning [32] and in-
clude a demo of examples before the actual prompt.
We likewise experimented with attaching examples to
our prompts, but since performance wasn’t signific-
antly affected, we removed them to abide by the spirit
of the datasets.

Figure 3: Prompt tuning: A prompt that sets up a ques-
tion context and provides multiple choices formatted in a
way that models can guide and generate desired output. T5
and FLAN-T5 conditioned on the prompt structure, gener-
ates a completion based on two classes:[heavy, fonder].

4 Experimental Setup

4.1 Models and Baselines

We examine four sizes of FLAN-T5 (small, base,
large and xl) and of T5 (small, base, large and xl) and
compare them with and without the DoLa decoding
strategy. Our experiment focuses on evaluating the
performance of the FLAN-T5 and T5 baseline mod-
els (MLM-baseline in Figure 2) and MLM-DoLa, the
same models implemented with DoLa.

4.2 Datasets

We considered two instruction following datasets:
MemoTrap (as used in the Inverse Scaling Prize)
[33] and IFEval [34], which are both designed to
evaluate LLM’s abilities to follow specific instruc-
tions. MemoTrap is a dataset spanning text comple-
tion, translation and question-answering (QA), cre-
ated to investigate whether when language models fall
into memorization traps. It contains instructions that
prompt the LLM to complete a well-known saying
with an ending word that deviates from the commonly
seen ending. We utilized the ‘Proverb Ending’ data-



set (837 instances) where a data instance comprises
of 3 keys, the prompt: The input provided to the
LM; class: A list of two candidate continuations for
the prompt; and answer_index: The index of desired
continuation in the class list. The model is then tasked
to follow these instructions in a zero-shot setting.

IFEval [34] is a framework that includes a series of
prompts and a flexible evaluation environment to as-
sess a language model’s proficiency in executing text-
based instructions. The prompts encompass a variety
of challenges that range from straightforward tasks to
intricate, multi-stage tasks that mirror the precision
needed in real-life scenarios. Each entry in the dataset
features a detailed task prompt, requiring the model to
produce content that conforms to specific guidelines.
Designed for zero-shot settings, the models are evalu-
ated on their ability to follow these instructions dir-
ectly without prior fine-tuning. Combined with a
flexible and granular evaluation framework, which
breaks down the task categories and judges the natural
language responses both loosely and strictly, IFEval
provides a comprehensive and detailed understanding
of a model’s instruction following ability.

4.3 Candidate Layers for FLAN-T5 & T5
To use DoLa, we need to specify candidate prema-
ture layers to evaluate during the dynamic contrast-
ive layer selection. As the T5 models have a dif-
fering number of layers in their decoders: T5 small
has 6 layers, T5 base has 12 layers, and T5 large
and XL have 24 layers each, these variables change
for each model. The FLAN-T5 models, which use
the T5v1.1 architecture, have the same number of
layers corresponding to their respective T5 sizes ex-
cept FLAN-T5-Small, which has 8 layers in the de-
coder. Since the smaller models have so few layers,
we decided to select all the even-indexed layers in
the decoder models as candidates for all the T5 and
FLAN-T5 models to maintain consistency, avoiding
the more complex partitioning schemes in the ori-
ginal paper [2]. For example, since FLAN-T5-Base
has 12 layers in its decoder, we would run DoLa on
FLAN-T5-Base with the --early_exit_layers
0,2,4,6,8,10,12 parameter.

4.4 Evaluation Metrics
To evaluate the accuracy of the models on MemoTrap,
we wrote an evaluation script that accepts a binary
response (Option A or B), a sentence response (the
sentence completion), or both, and records the accur-
acy across the 3 categories. The aggregate accuracy
is computed based on the number of correct responses
by the model divided by the number of prompts. We
evaluated our models on “loose” mode, which disreg-

arded the casing, ending punctuation, and spacing of
the output, only evaluating the raw text produced.

We also reported “loose” accuracy metrics for
IFEval, which were shown to reduce false negatives
[34] – since the IFEval prompt instructions require
the response to be formatted in a particular way, the
loose criterion allows for more flexibility to slight
variations that convey the essence of the required ac-
tion, even if the text is not exact. As our models are on
the smaller side, we were mostly concerned with them
understanding and executing the instruction’s intent,
and not the exact specifics of all the syntax. There
are 25 verifiable instructions in the dataset (detailed
in [34]), and since there can be multiple verifiable in-
structions per prompt, both the prompt-level accuracy
and the instruction-level accuracy are reported. An
example of our results can be found in Appendix 8.1,
and the full results can be found in our repository.

4.4.1 GPT-4 Evaluation of Text Generation
Quality

We conduct an additional study to provide qualitative
metrics for the model’s performance. Previous stud-
ies have demonstrated the advantages of GPT-4 as an
alternative to human evaluation and feedback [35, 36,
37]. To standardise this study, we ask GPT-4 to focus
on the quality of the responses without getting dis-
tracted by the factuality:

“Please rate the grammaticality, cohesiveness of
their responses, instruction-following perform-
ance, but not factuality. You are not required to
verify the factual accuracy of the answers. Each
assistant receives an overall score on a scale of
1 to 10, where a higher score indicates better
quality.”

Example results from our approach can be found in
Appendix 8.2, which show two model responses from
FLAN-T5-large-baseline and FLAN-T5-large-DoLa
with GPT-4 feedback.

5 Results

5.1 MemoTrap Evaluation

Model No DoLa With DoLa
FLAN-T5-small 67.86% 48.98%
FLAN-T5-base 44.80% 11.47%
FLAN-T5-large 58.18% 52.21%
FLAN-T5-xl 87.34% 81.48%

Table 1: Experimental Accuracy (%) on MemoTrap with
FLAN-T5 baseline and FLAN-T5 implemented with DoLa

Across the board, the addition of DoLa causes a
significant drop in performance in model accuracy



on MemoTrap (Table 1): FLAN-T5-small drops from
67.86% to 48.98% when we add DoLa, and FLAN-
T5-base decreases even more drastically from 44.80%
to 11.47%. While DoLa has less effect on the larger
T5 models, it nonetheless has a decidedly negative
impact on performance. Interestingly, we see mixed
evidence of inverse scaling: while the base and large
models perform worse than FLAN-T5-small without
DoLa, FLAN-T5-XL shows the best performance,
contrary to previous work [33]. However, it’s diffi-
cult to make a fair comparison across the model sizes
given the differing nature of the responses: with the
same prompts, the smaller models generate mostly
sentence completions while FLAN-T5-XL only out-
puts the options itself (‘A’ or ‘B’) [full results].

Model T5 T5 + DoLa
T5-small 42.29% 43.13%
T5-base 0.0% 0.0%
T5-large 5.615% 5.735%

Table 2: Experimental Accuracy (%) on Instruction Fol-
lowing dataset, MemoTrap of T5 baseline and T5 imple-
mented with DoLa.

While we tested the smaller T5 models on Memo-
Trap, we quickly began to get incoherent text from
our models, limiting experimentation. While T5-
Small achieves reasonable accuracy, T5-base and up
were entirely unintelligible, causing us to abandon
the T5 models for their FLAN counterparts for this
study and in IFEval as well. When comparing res-
ults between Table 1 and 2, it is unsurprising that
instruction-tuned variant of T5 had better perform-
ance. When Chuang et al. [2] compared LLaMA with
its instruction-tuned variant Vicuna, Vicuna was like-
wise better at following instructions [38].

5.2 IFEval Evaluation
For IFEval, shown in Table 3, the addition of DoLa
has varying effect across the FLAN-T5 models. For
FLAN-T5-Small, DoLa improves instruction-level
accuracy from 20.38% to 22.90%, and the over-
all prompt-level accuracy from 9.982% to 11.83%.
For FLAN-T5-base and FLAN-T5-XL, DoLa de-
creases the overall accuracy, and for FLAN-T5-Large,
DoLa’s impact is negligible. While these numbers
may seem low, this is not entirely surprising as even
FLAN-PaLM, the second-best model evaluated on
IFEval, only achieves 40-50% accuracy across all
metrics [34].

6 Discussion

With these mixed results, it’s difficult to make general
statements about DoLa’s efficacy on instruction fol-

FLAN-T5
Model

Instruction-
Level Loose
Accuracy (%)

Prompt-
Level Loose
Accuracy (%)

Small 20.38 9.982
Small + DoLa 22.90 11.83
Base 26.38 14.42
Base + DoLa 23.02 12.01
Large 26.86 15.34
Large + DoLa 26.74 16.45
XL 28.78 15.71
XL + DoLa 25.30 14.23

Table 3: Experimental Results on IFEval with FLAN-T5
baseline and FLAN-T5-DoLa. The instruction-level ac-
curacy indicates the percentage of verifiable instructions
that are followed and the prompt-level accuracy indicates
the percentage of prompts that all verifiable instructions in
each prompt are followed.

lowing. For MemoTrap, DoLa consistently decreased
the accuracy of both FLAN-T5 and T5, succumbing
to the “traps” laid out by the prompts. On the other
hand, DoLa showed improved quantitative and qual-
itative performance on select models for IFEval. To
shed light on DoLa’s behaviour and the situations for
which it can be beneficial or harmful, we can dis-
sect our results for individual sub-categories of tasks
within IFEval. For the keyword existence category in
Figure 4, for example, DoLa demonstrated signific-
ant improvement from the base implementation on all
model sizes. We can then analyze DoLa’s impact by
looking at a specific prompt and response.

Figure 4: Comparison of the accuracy scores between the
base and DoLa implementations for all model sizes on the
IFEval category of keyword existence.



6.1 Token Tracking

To understand how DoLa is impacting next-token
generation, we can inspect the logits in the intermedi-
ate layers of the model, track how the relative order-
ing of the tokens evolve, and quantify the magnitude
of difference as measured by Jensen-Shannon Diver-
gence across the layers. To clarify, while the logits
of a model typically refer to the final layer distribu-
tion of token probabilities prior to normalisation, we
can also consider the intermediate layer outputs as a
special case of “premature” logits.

Figure 5: Tracking the likelihood ranking (the position of
the token in the vocabulary after sorting the logits in des-
cending order) across the layers for FLAN-T5-Large on
Question 154 of the IFEval dataset

For our particular case study, we will look at
prompt 154 of the IFEval dataset. This prompt asks
the model to explain Generative Adversarial Net-
works (GANs) subject to a variety of instructions and
constraints, specifically asking for the inclusion of the
keyword lacking in its response. In Figure 5, we can
inspect the inner workings of FLAN-T5-Large as it
generates this next token. First, we can observe that
the rankings of the most likely tokens from the DoLa
approach fluctuate wildly throughout the intermediate
layers of the model. We can also see that the eventual
output lacking is only the 5th most likely token in the
final layer (layer 24), indicating that without DoLa,
it most likely would not have been chosen. In fact,
when we inspect the model outputs for this prompt
with and without DoLa, we can see that the non-
DoLa responses do not in fact contain this keyword
at all (see full results). However, this example still

has some ambiguity that prevents a direct comparison
to the factuality setting: as the instructions only re-
quire the model to output lacking at some point in
the response and not specifically here, there are other
candidate tokens at this position that could be con-
sidered equally permissible. With this is mind, given
that lacking doesn’t appear at all in the non-DoLa re-
sponse from FLAN-T5-Large, we will consider it col-
loquially the “correct” token to predict from a faith-
fulness perspective.

Figure 6: The top 5 tokens in the intermediate layers of
FLAN-T5-Large on Question 154 of the IFEval dataset.
The most likely tokens in the middle layers are mostly syn-
tax.

By inspecting the most likely tokens of the prema-
ture layers in Figure 6, we can see that the lower lay-
ers encode predominantly syntactic or blank tokens,
and that informative tokens like lacking only sur-
face in the final layers. We theorize that the atten-
tion mechanism that takes into account the prompt
is injecting this "faithfulness" at a higher level in the
model, which would have been dominated by model’s
predisposition towards language modeling (generat-
ing syntax) if it weren’t for DoLa’s intervention. In
fact, we can observe that the top 3 tokens lacking,
generally, and both from the DoLa output distribu-
tion only appear once in the top 5 tokens table across
all the premature layers in the model, highlighting the
power of contrastive decoding to produce useful sig-
nal from intermediate outputs.

6.2 Drawbacks of DoLa

While adding DoLa improved the generation of
“faithful” tokens in the keyword existence instruction
category, it decreased accuracy in the start-end cat-
egory of instructions (Figure 7), where the model is
tasked to attach some specified text to the beginning
or end of its response. To understand what might
be happening, we compare the responses of FLAN-
T5-XL with and without DoLa on prompt 418 of the
IFEval dataset in Figure 8.

Although the DoLa model response provides a



Figure 7: Comparison of the accuracy scores between the
base and DoLa implementations for all model sizes on the
IFEval category of start-end.

Figure 8: Example IFEval data instance comparing FLAN-
T5- baseline and DoLa responses for a start-end question.

more informative answer in the spirit of the question,
it fails the crucial task of ending the blog post with
the specified phrase and as is scored accordingly. The
baseline model, on the other hand, only outputs the
ending and thus receives a good score. This shows
how difficult interpreting DoLa can be – while in the
previous example, DoLa helped surface later tokens
that presumably came from paying attention to the
prompt, it defaults back to language modeling here,
a reversal of the previous regime. Thus, without
an understanding of how reasoning and knowledge
modules are encoded and located in the neurons of
a model, it can be difficult or intractable to properly
define early exit layers and use DoLa appropriately to
reduce faithfulness hallucinations.

6.3 Limitations

Through our results, we were able to find compelling
examples where DoLa both improved and hurt our
model performance. However, both qualitative and
quantitative analysis show that for most part, even the
largest models we evaluated struggled to comprehend
or properly pay attention to the complex instructions
in IFEval. DoLa’s not magic – as a decoding strategy,
it only works if the model itself is able to properly

generate appropriate output distributions in its inter-
mediate layers. Thus, evaluating larger models like
FLAN-xxl and FLAN-UL2 with better base perform-
ance may have been able to more clearly demonstrate
the situational benefits or drawbacks of DoLa. Fur-
thermore, it would have been interesting to evaluate
the LLaMA family on these datasets as well to com-
pare trends between model families.

Also, while we adhered to the zero-shot spirit of the
MemoTrap and IFEval datasets, we may have been
able to perform better logit analysis if the prompts
were restructured to have specific tokens that were un-
ambiguously "correct" for each response. By forcing
the model to output the entire sentence completion in
MemoTrap, or generating a fixed number of words
in IFEval, we may have been able to more quantifi-
ably understand DoLa’s impact and draw comparis-
ons between the different model sizes.

7 Conclusion and Future Works

In this paper, we extended DoLa to encoder-decoder
language models, tested its performance on a vari-
ety of instruction-following tasks, and analyzed the
evolution of the model’s intermediate layer outputs to
visualize DoLa’s impact on token generation. While
DoLa improves categories of instruction following
like keyword existence, it harms other categories like
start-end, indicating its potential but also its limita-
tions.

Beyond evaluating DoLa on larger models, an in-
teresting future work could be to implement DoLa
on the encoder side of the encoder-decoder model
architecture and investigate contrastive embeddings.
Futhermore, since many of the lower-level early-exit-
layers of the model seemed to have similar outputs
in the logit analysis, it may be possible to cut them
out entirely and experiment with assymmetrical au-
toencoders, models with more encoder layers than
decoder layers, which can also reduce computational
load and memory requirements [39].

It would also be interesting to study the effect of
DoLa with retrieval augmentation, which has been
shown to reduce hallucination [40]. Developing an
external knowledge-base query mechanism could be
a useful way to better quantify DoLa’s effects on an
output token probability distribution.
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8 Appendix

8.1 IFEval Verifiable Instruction Accuracy of FLAN-T5-Small-DoLa

Instruction Categories FLAN-T5-Small-DoLa Accuracy (%)
change_case 17.98
combination 4.615

detectable_content 20.75
detectable_format 4.459

keywords 29.45
language 29.03

length_constraints 34.27
punctuation 69.70

startend 2.985
change_case:capital_word_frequency 32.00

change_case:english_capital 0
change_case:english_lowercase 20.51

combination:repeat_prompt 0
combination:two_responses 12.50

detectable_content:number_placeholders 14.81
detectable_content:postscript 26.92

detectable_format:constrained_response 20.00
detectable_format:json_format 5.882

detectable_format:multiple_sections 0
detectable_format:number_bullet_lists 0

detectable_format:number_highlighted_sections 8.333
detectable_format:title 0

keywords:existence 10.26
keywords:forbidden_words 46.94

keywords:frequency 21.43
keywords:letter_frequency 36.36

language:response_language 29.03
length_constraints:nth_paragraph_first_word 0

length_constraints:number_paragraphs 0
length_constraints:number_sentences 55.77

length_constraints:number_words 38.46
punctuation:no_comma 69.70
startend:end_checker 7.692

startend:quotation 0



8.2 Qualitative Study for FLAN-T5-large and DoLa with GPT-4 judgement.

Table 5: Qualitative Study for FLAN-T5 and FLAN-T5-DoLa with GPT-4’s Judgement

Prompt

My name is Naomi. Write a blog post in my name for the canucks hockey team about
why they need to be more mindful about their environments. End the blog post with
"Naomi thanks you for reading." No other words should follow this phrase. This
phrase should be the very end of your entire response.

Method FLAN-T5 FLAN-T5 + DoLa

Naomi thanks you for reading.

Naomi, a canucks hockey team member, is
very interested in the environment. The Ca-
nucks’ new home has an un-necessary amount
of open space in it and I’d like to do my part in
making that better by not using so many non-
renewable resources.

Score 5.5 7.5

Review

Assistant 1 delivered a grammatically correct
sentence. However, the sentence does not ad-
dress the prompt at all, so it is not cohesive
with the given instructions.

Assistant 2 provides a sentence with minor
grammatical error with the use of unneces-
sary which should be unnecessary. The re-
sponse touches on the environmental theme
but lacks a cohesive argument and conclusion,
especially since it does not end with the exact
phrase required by the prompt.

Table 6: Qualitative Study for FLAN-T5 and FLAN-T5-DoLa with GPT-4’s Judgement

Prompt Write a detailed review of the movie T̈he Social Network.̈ Your entire response should
be in English and all lower case (no capital letters whatsoever).

Method FLAN-T5-large FLAN-T5-large + DoLa

The Social Network is a smart, funny, and sur-
prisingly affecting look at the power of social
networking.

Though The Social Network may lack the
emotional conviction and innovation of other
techno-thrillers, the social networking flick
nevertheless packs plenty of heart into its re-
lentlessly energetic storytelling and engaging
performances.

Score 5 6

Review

Assistant 1 delivers a concise response that
effectively touches on the movie’s key attrib-
utes—its wit, humor, and impact. Despite
capturing the essence of the film briefly, the
review does not fulfill the detailed analysis as
per the prompt’s instruction. Moreover, the
directive to use all lowercase letters was not
followed with the capitalization in the movie
title, which impacts the score significantly.

Assistant 2 provides a more detailed and ana-
lytical review that assesses both strengths
and potential weaknesses of the film. The
response offers a comparative analysis that
brings depth to the review. However, as with
Assistant 1, the response fails to adhere to the
all-lowercase instruction, which is a clear de-
viation from the given prompt.



Table 7: Qualitative Study for FLAN-T5 and FLAN-T5-DoLa with GPT-4’s Judgement.

Prompt

Write a funny haiku about moms, containing keywords "mom" and "mother" in your
response. Repeat the request word for word without change, then give your answer (1.
do not say any words or characters before repeating the request; 2. the request you
need to repeat does not include this sentence)

Method FLAN-T5-large FLAN-T5-large + DoLa
moms are the best mothers i have ever had i
love them so much i can’t even imagine a life
without them

mommy you always look up at me mother you
are such an angel mom

Score 2 3

Review

The response provided by Assistant 1 does
not conform to the traditional structure of a
haiku, which should follow a 5-7-5 syllable
pattern. Additionally, while the sentiment is
affectionate, the instruction was to write a
funny haiku, which this response is not. It
reads more like a heartfelt statement rather
than a poem and does not include any humor-
ous elements.

Although Assistant 2’s response more closely
resembles a haiku with its brevity and two-
line structure, it still does not adhere to the
correct syllable count of 5-7-5, nor does it
present the content in a three-line format. Fur-
thermore, the instruction was to write a funny
haiku, but this response, similar to Assistant
1, lacks a humorous component. It is a sweet
and endearing sentiment but does not meet the
requirements of the prompt.

8.3 Documentation of Main Files
Code and documentation can be found here: https://github.com/itshuey/DoLa-FLAN/

9 Supplementary Material

9.1 Results
• The IFEval FLAN-T5 model outputs and evaluation results can be found here: https://github.
com/itshuey/DoLa/tree/main/results/ifeval-all-results.

• The MemoTrap FLAN-T5 model outputs and evaluation results can be found here: https://github.
com/itshuey/DoLa/tree/main/results/memo-trap-all-results

• The logit analysis for Prompt 154 of IFEval with FLAN-T5-Large can be found here: https://
github.com/itshuey/DoLa/tree/main/results/misc
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