InfoBAX: What inspired this?

Anabel Yong

31st October 2025

NOTE: There are some miscellaneous concepts on here, which do not make this writeup fully self-contained.

1 Fundamental Overview

Bayesian Optimal Experimental Design (BOED) states:

Pick the next experiment/design x to maximize expected information gain (EIG) about a target unknown (parameters, a function property, etc.

This goes back to Lindley's decision theoretic view of experiments[1](maximize mutual information), and the classic survey by Chaloner & Verdinelli[2] that set EIG as a core criterion. Mathematically, if the target is some random quantity Q and observing y_x is the outcome of running the experiment at design x, EIG is:

$$EIG_x = H[\mathcal{Q}|D_t] - \mathbb{E}_{y_x|D_t}[H|\mathcal{Q}|D_t \cup \{(x,y_x)\}]$$

which is the expected reduction in entropy about \mathcal{Q} after measuring at x. InfoBAX [3] will take \mathcal{Q} to be the output of an algorithm run on the unknown function - this is the key jump. In InfoBAX, the authors write the same idea for a chosen algorithm \mathcal{A} :

$$EIG_x = H[\mathcal{O}_A|D_t] - \mathbb{E}_{u_x|D_t}[H|\mathcal{O}_A|D_t \cup \{(x,y_x)\}]$$

1.1 Immediate Ancestors: How did InfoBAX come about?

Before InfoBAX, previous Bayesian Optimization papers demonstrated how to compute/approximate EIG cheaply by changing what you learn about.

1. Entropy Search (ES)[4] targeted information about the $\arg\max x^*$ of the black-box function. It derived mutual information (MI) with respect to x^* , sampling from the "posterior over optimizers" and using that to guide evaluations. The mutual information (MI) between two quantities is a measure of the extent to which knowledge of one quantity reduces uncertainty about the other.

- 2. Predictive Entropy Search (PES)[5] reparameterized the same objective into an equivalent, easier form using the predictive distribution; later PESMO did this for Pareto sets[6].
- 3. Max-value Entropy Search (MES)[7] simplified further by maximizing information about the maximum value f^* instead of the maximizer, yielding strong performance and much cheaper estimation.

A second strand used mutual information in other Gaussian Processes tasks, Informational Approach to Global Optimization (IAGO)[8] minimized entropy of the minimizer - an early information-thereotic Bayesian optimization method closely related to Hennig and Schuler [4] above. Interestingly, Krause, Singh and Guestrin [9] maximized mutual information to place sensors. This concept here normalized the idea of optimizing information about a property of f (predictive field) rather than a single point. Stepwise Uncertainty Reduction (SUR) [10] targeted sets/level sets (e.g. excursion sets), reinforcing the goal-oriented perspective. Build acquisitions around uncertainty in a property of f, not just immediate improvement. Finally, Myopic Posterior Sampling (MPS) [11] unified many "goal-oriented" adaptive Design of Experiment (DOE) problems by letting us define a task-specific reward and sampling from the posterior to act myopically, which goes beyond "finding the maximizer".

Additionally, our target is only computable by running a simulator/algorithm, not by a neat tractable likelihood. Approximate Bayesian Computation (ABC), which was first practically demonstrated by geneticists [12], where only simulations providing statistics within some ϵ of observed values were accepted. The corresponding parameter values approximated samples from the posterior distribution. ABC made it standard by simulating forward and accepting samples close to observations - no closed-form likelihood needed. InfoBAX uses this to condition on algorithm outputs that are defined only via simulating an algorithm on samples of f.

2 Elegance of InfoBAX

InfoBAX reframes BOED for algorithm outputs: pick x to maximally reduce uncertainty about $\mathcal{O}_A(f)$, the output produced by running some base algorithm \mathcal{A} on the unknown function f (e.g. the top-k set in a finite library, the Pareto front, the root, etc.). The clever part is how to estimate EIG tractably in Equation 1 above. How I have framed this, is that there are two nice big ideas here:

2.1 Execution paths as latent variables

When algorithm \mathcal{A} runs on f, it generates an execution path $\epsilon_A(f) = \{(z_s, f_{z_s})\}_{s=1}^S$ showing which points it queried and what values it saw. InfoBAX observes that if you knew a plausible execution path, then under a GP, you can compute the posterior predictive at any candidate x conditioned on that path using the

standard "noisy+noiseless" GP conditoning. The intuition here is that the paths act like noiseless pseudo-observations of f.

Concretely, with data D_t (noisy) and sampled path ϵ_A (noiseless), the predictive $p(y_x|D_t,\epsilon_A)$ stays Gaussian, with mean/variance obtained by augmenting the Gram matrix with zero-noise blocks for the noiseless points - precisely what the paper writes as the closed-form [3].

2.2 Two practical EIG estimators.

ABC view over execution paths: Draw psoterior function samples $f \sim p(f|D_t)$, run algorithm \mathcal{A} on each to get many output/path pairs $(\mathcal{O}_A, \epsilon_A)$, then use an ABC neighbourhood around each simulated output to form approximate samples from $p(\epsilon_A|\mathcal{O}_A, D_t)$. With these, you Monte-Carlo the entropy term in EIG. This is the Stage 1 cache paths, Stage 2 reuse them to score any x^* methodology. Subsequence (v-variable) estimator. Often the property \mathcal{O}_A determines a small set of function values along part of the execution path (the maximizer's location/value; a level set; top-k values). Then you can push EIG through that lower-dimensional sufficient slice v and compute EIG, in Equation 1, which closed-form under Gaussian Processes, and a great approximation to the full EIG. See Neiswanger, Wang and Ermon [3] for the full discussion.

Top-K example for any practical experimentation

Suppose \mathcal{A} returns the **top-**k **items** from a finite set \mathcal{X} (InfoBAX's running example). Define $O_{\mathcal{A}}(f) = K^* \subset \mathcal{X}$. InfoBAX:

- 1. Maintains a GP posterior over f from data D_t .
- 2. **Stage 1:** Sample $f^{(j)} \sim p(f \mid D_t)$, run \mathcal{A} on each, recording $(O_{\mathcal{A}}^{(j)}, e_{\mathcal{A}}^{(j)})$. (These are the magenta "simulated outputs," the cached "red dots." in Neiswanger's talk.)
- 3. Stage 2: For any candidate x, approximate $EIG_t(x)$ either
 - via ABC over paths: use nearby O_A to approximate samples from $p(e_A \mid O_A, D_t)$ and compute the Monte Carlo entropy reduction; or
 - via the subsequence estimator v (e.g., the function values at the items believed to be in the top-k), which is closed-form under the GP.

References

 Lindley DV. On a Measure of the Information Provided by an Experiment. The Annals of Mathematical Statistics 1956 Dec; 27:986–1005. DOI: 10.1214/aoms/1177728069. Available from: https://doi.org/10.1214/aoms/1177728069

- Chaloner K and Verdinelli I. Bayesian Experimental Design: A Review. Statistical Science 1995 Aug; 10:273–304. DOI: 10.1214/ss/1177009939. Available from: https://doi.org/10.1214/ss/1177009939
- 3. Neiswanger W, Wang KA and Ermon S. Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information. 2021. arXiv: 2104.09460 [stat.ML]. Available from: https://arxiv.org/abs/2104.09460
- 4. Hennig P and Schuler CJ. Entropy Search for Information-Efficient Global Optimization. 2011. arXiv: 1112.1217 [stat.ML]. Available from: https://arxiv.org/abs/1112.1217
- Hernández-Lobato JM, Gelbart MA, Hoffman MW, Adams RP and Ghahramani Z. Predictive Entropy Search for Bayesian Optimization with Unknown Constraints. 2015. arXiv: 1502.05312 [stat.ML]. Available from: https://arxiv.org/abs/1502.05312
- 6. Hernandez-Lobato D, Hernandez-Lobato J, Shah A and Adams R. Predictive Entropy Search for Multi-objective Bayesian Optimization. Proceedings of The 33rd International Conference on Machine Learning. Ed. by Balcan MF and Weinberger KQ. Vol. 48. Proceedings of Machine Learning Research. New York, New York, USA: PMLR, 2016:1492-501. Available from: https://proceedings.mlr.press/v48/hernandez-lobatoa16.html
- 7. Wang Z and Jegelka S. Max-value Entropy Search for Efficient Bayesian Optimization. 2018. arXiv: 1703.01968 [stat.ML]. Available from: https://arxiv.org/abs/1703.01968
- 8. Villemonteix J, Vazquez E and Walter E. An Informational Approach to the Global Optimization of Expensive-to-Evaluate Functions. Journal of Global Optimization 2009; 44:509–34. DOI: 10.1007/s10898-008-9354-2. Available from: https://doi.org/10.1007/s10898-008-9354-2
- Krause A, Singh A and Guestrin C. Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies. Journal of Machine Learning Research 2008; 9:235–84. Available from: http://jmlr.org/papers/v9/krause08a.html
- Chevalier C, Bect J, Ginsbourger D, Vazquez E, Picheny V and Richet Y. Fast Parallel Kriging-Based Stepwise Uncertainty Reduction with Application to the Identification of an Excursion Set. Technometrics 2014; 56:455-65. DOI: 10.1080/00401706.2013.860918. Available from: https://doi.org/10.1080/00401706.2013.860918
- 11. Kandasamy K, Neiswanger W, Zhang R, Krishnamurthy A, Schneider J and Poczos B. Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments. *Proceedings of the 36th International Conference on Machine Learning*. Ed. by Chaudhuri K and Salakhutdinov R. Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019 Sep :3222–32. Available from: https://proceedings.mlr.press/v97/kandasamy19a.html

12. Pritchard JK, Seielstad MT, Perez-Lezaun A and Feldman MW. Population Growth of Human Y Chromosomes: A Study of Y Chromosome Microsatellites. Molecular Biology and Evolution 1999; 16:1791–8