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NOTE: There are some miscellaneous concepts on here, which do
not make this writeup fully self-contained.

1 Fundamental Overview

Bayesian Optimal Experimental Design (BOED) states:

Pick the next experiment/design x to mazimize expected information gain (EIG)
about a target unknown (parameters, a function property, etc.

This goes back to Lindley’s decision theoretic view of experiments|1|(maximize
mutual information), and the classic survey by Chaloner & Verdinelli[2] that set
EIG as a core criterion. Mathematically, if the target is some random quantity
Q and observing y, is the outcome of running the experiment at design z, EIG
is:

EIG, = H[Q|Dy] — E,,p,[H|Q|D: U{(x,y:)}]

which is the expected reduction in entropy about Q after measuring at x.
InfoBAX (3] will take Q to be the output of an algorithm run on the unknown
function - this is the key jump. In InfoBAX, the authors write the same idea for
a chosen algorithm A:

EIG, = H[Oa|Di] = By, p, [H|Oa|D: U{(, y)}]

1.1 Immediate Ancestors: How did InfoBAX come about?

Before InfoBAX, previous Bayesian Optimization papers demonstrated how to
compute/approximate EIG cheaply by changing what you learn about.

1. Entropy Search (ES)[4] targeted information about the arg max x* of the
black-box function. It derived mutual information (MI) with respect
to x*, sampling from the "posterior over optimizers" and using that to
guide evaluations. The mutual information (MI) between two quantities
is a measure of the extent to which knowledge of one quantity reduces
uncertainty about the other.



2. Predictive Entropy Search (PES)[5] reparameterized the same objective
into an equivalent, easier form using the predictive distribution; later
PESMO did this for Pareto sets|6].

3. Max-value Entropy Search (MES)|7| simplified further by maximizing
information about the maximum value f* instead of the maximizer, yielding
strong performance and much cheaper estimation.

A second strand used mutual information in other Gaussian Processes tasks,
Informational Approach to Global Optimization (IAGO)|8| minimized entropy
of the minimizer - an early information-thereotic Bayesian optimization method
closely related to Hennig and Schuler [4] above. Interestingly, Krause, Singh and
Guestrin [|9] maximized mutual information to place sensors. This concept here
normalized the idea of optimizing information about a property of f(predictive
field) rather than a single point. Stepwise Uncertainty Reduction (SUR) [10]
targeted sets/level sets (e.g. excursion sets), reinforcing the goal-oriented per-
spective. Build acquisitions around uncertainty in a property of f, not just
immediate improvement. Finally, Myopic Posterior Sampling (MPS) [11] unified
many "goal-oriented" adaptive Design of Experiment (DOE) problems by letting
us define a task-specific reward and sampling from the posterior to act myopically,
which goes beyond "finding the maximizer".

Additionally, our target is only computable by running a simulator/algorithm,
not by a neat tractable likelihood. Approximate Bayesian Computation (ABC),
which was first practically demonstrated by geneticists [12]|, where only simula-
tions providing statistics within some e of observed values were accepted. The
corresponding parameter values approximated samples from the posterior distri-
bution. ABC made it standard by simulating forward and accepting samples
close to observations - no closed-form likelihood needed. InfoBAX uses this to
condition on algorithm outputs that are defined only via simulating an algorithm
on samples of f.

2 Elegance of InfoBAX

InfoBAX reframes BOED for algorithm outputs: pick  to maximally reduce
uncertainty about O4(f), the output produced by running some base algorithm
A on the unknown function f (e.g. the top-k set in a finite library, the Pareto
front, the root, etc.). The clever part is how to estimate EIG tractably in
Equation [I| above. How I have framed this, is that there are two nice big ideas
here:

2.1 Execution paths as latent variables

When algorithm A runs on f, it generates an execution path €4 (f) = {(zs, f-.)}5_;
showing which points it queried and what values it saw. InfoBAX observes that
if you knew a plausible execution path, then under a GP, you can compute
the posterior predictive at any candidate x conditioned on that path using the



standard "noisy-+noiseless" GP conditoning. The intuition here is that the paths
act like noiseless pseudo-observations of f.

Concretely, with data D; (noisy) and sampled path €4 (noiseless), the predictive
p(yz| D¢, €4) stays Gaussian, with mean/variance obtained by augmenting the
Gram matrix with zero-noise blocks for the noiseless points - precisely what the
paper writes as the closed-form [3].

2.2 Two practical EIG estimators.

ABC view over execution paths: Draw psoterior function samples f ~ p(f|D;),
run algorithm A on each to get many output/path pairs (O4,€4), then use an
ABC neighbourhood around each simulated output to form approximate samples
from p(ea|Oa, D;). With these, you Monte-Carlo the entropy term in EIG. This
is the Stage 1 cache paths, Stage 2 reuse them to score any z* methodology.
Subsequence (v-variable) estimator. Often the property 04 determines a small
set of function values along part of the execution path (the maximizer’s loc-
ation/value; a level set; top-k values). Then you can push EIG through that
lower-dimensional sufficient slice v and compute EIG, in Equation [I} which
closed-form under Gaussian Processes, and a great apprxoimation to the full
EIG. See Neiswanger, Wang and Ermon |3] for the full discussion.

Top-K example for any practical experimentation

Suppose A returns the top-k items from a finite set X (InfoBAX’s running
example). Define O4(f) = K* C X. InfoBAX:

1. Maintains a GP posterior over f from data D;.

2. Stage 1: Sample fU) ~ p(f | D), run A on each, recording (O%),ei{)).
(These are the magenta “simulated outputs,” the cached “red dots.” in
Neiswanger’s talk.)

3. Stage 2: For any candidate x, approximate EIG;(x) either
e via ABC over paths: use nearby O 4 to approximate samples from

plea | Oa,Dy) and compute the Monte Carlo entropy reduction; or

e via the subsequence estimator v (e.g., the function values at the
items believed to be in the top-k), which is closed-form under the GP.
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