
Maximum Likelihood Estimation (MLE)

Anabel Yong

Abstract
In this report, the concepts of maximum likelihood estimation, and likelihood functions are introduced. These
concepts will be explained and the different approaches utilized to calculate these functions. An example
will be provided throughout the report, which is the ABO blood group example where we are estimating the
parameters for p, q, r (the alleles according to Hardy-Weinberg principle).

Introduction

Likelihood
The concept of likelihood is important in both maximum likelihood estimation and Bayesian inference.
Likelihood is not probability; however, it is proportional to probability. For likelihood, data is treated as a
given and hypothesis varies whereas probability is the opposite of this. A prime example can be shown in
the drug trial test.

Suppose you are running an experiment trial n times, x times a drug is successful are observed. As there are
only two probable outcomes, the probability of getting x heads is given by the binomial distribution. Now,
if this is a fair probability, the probability of getting a successful drug trial is 0.5. Binomial distribution is
given by:

P (χ = x|p) =
(
n

x

)
px(1− p)(n−x) (1)

If the probability was fair, the probability of getting 6 successful trial runs and 4 unsuccessful trials is given
by:

P (χ = 6|p = 0.50) =
10!

6! ∗ 4!
∗ (0.5)6(0.5)4 = 0.21 (2)

If the probability of the drug was more likely to work, indicating this was a biased trial, probability of getting
successful drug trial is p=0.75, the probability of getting 6 successful trial runs and 4 unsuccessful trials is
given by:

P (χ = 6|p = 0.75) =
10!

6! ∗ 4!
∗ (0.75)6(0.25)4 = 0.15 (3)

With this example, the likelihood ratio of getting 6 successful drug trials in 10 experiment runs for a biased
trial versus a fair trial would be denoted by:

Likelihood Ratio(P = 0.5, 0.75) =
P (χ = 6|p = 0.50)

P (χ = 6|p = 0.75)
= 1.4 (4)

The example above showcases how calculating likelihood determines whether we can trust the parameters
in model based on the sample data observed. Calculating the likelihood helps us determine if the model
parameter p=0.5 is defined correctly. This indicates, from the example above, the probability of a fair
trial(p=0.5) is 1.4 times more likely than a biased trial (p=0.75).

1

ziheng
Highlight
the concepts of likelihood function and maximum likelihood estimation

ziheng
Highlight
calculate the maximum likelihood estimates

try to use words precisely.
"maximum likelihood estimation" is a method, not a function, so it does not make sense when you say "these functions". also the different approaches are not used to calcualte the likelihood function. they are used to "maximize" the likelihood function or to calculate the maximum likelihood estimates.

ziheng
Highlight
the alllele frequencies of the ABO blood groups.

p, q, r are not the alleles. they are the frequencies of the alleles.

ziheng
Highlight
You should give a general definition of the likelihood function here, and then discuss its features, including its differences from a probability etc.
you never give a definition of the likelihood function, nor maximum likelihood estimation.

ziheng
Highlight
comma splice

ziheng
Highlight
possible

ziheng
Highlight

ziheng
Highlight
The probability of getting x successes in n trials

ziheng
Highlight
you don't say "If the probability is fair". you can say "If the coin is fair"

ziheng
Highlight

Maximum Likelihood Estimation (MLE)
For the concept of MLE, the example of the ABO Blood group will be presented. From the data table below,

Table 1:

Phenotype Genotype Probability Count
A AA+AO p2 + 2pr 44
B BB+BO q2 + 2qr 27
AB AB 2pq 4
O OO r2 88

As there are multiple outcomes from the table above, the probability is given by a multinomial distribution.
Therefore, the likelihood function is given by:

L(p, q) = (p2 + 2pr)nA ∗ (q2 + 2qr)nB ∗ (2pq)nAB ∗ (r2)nO (5)

or log-likelihood function:

l(p, q) = nA ∗ log(p2 + 2pr) + nB ∗ log(q2 + 2qr) + nAB ∗ log(2pq) + nO ∗ log(r2) (6)

As shown in equations 5 and 6 above, values of the parameters p, q, and r can change, which changes the
value of the likelihood/ log likelihood function. Indicatively, in order to maximise probability of data fitting
the model given in table, we need to calculate values of unknown parameters should achieve maximum
probability through the likelihood function.

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a statistical
model given observations, by finding the parameter values that maximize the likelihood of making the
observations given the parameters. This can be done in multiple ways, which includes setting the derivative
of the function to 0 and or utilizing non-linear optimization methods.

Approaches to deriving Maximum Likelihood Estimation
Setting Derivative to 0

In simple calculus, usually gaining the derivative of an equation, which provides us the gradient will help us
attain local minimum/ maximum. When setting the derivative to 0, this means the function is at critical
or stationary point. This concept can theoretically be achieved to the likelihood function to attain the
maximum likelihood.

However, calculating the derivative of likelihood function is quite hard to deal with due to the products and
numerical precision is hard to maintain going into very tiny probabilities. This is not tractable analytically
so the log-likelihood function is much preferred, which is the non-linear optimisation method.

Non-linear Optimization Method

Non-linear optimization method utilizes the log likelihood function. It is much easier to analyse equation 6
above when equating it to 0. In the ABO blood group example, this is a non-linear method as the objective
function is the log likelihood function. In this method, to maximise likelihood, the objective function is:

max.f = nA ∗ log(p2 + 2pr) + nB ∗ log(q2 + 2qr) + nAB ∗ log(2pq) + nO ∗ log(r2) (7)

s.t.p+ q < 1 (8)

p, q, r > 0, (9)

There are more constraints the objective function is subjected to but equation 8 and 9 are examples of the
constraints. Using the non-linear optimisation method is computationally efficient. Using this method, the
plots of log likelihood against p and q can be visualised with the initial observed data given in Table 1.

2

ziheng
Highlight

ziheng
Highlight
not in this case.
you can easily derive the derivatives.
you get a set of equations when you set the first derivatives to 0. solving the equations is hard, but calculating the derivatives is not.

Figure 1: 2D Contour Plot of Log Likelihood against p and q

Figure 2: 3D Contour Plot of Log Likelihood against p and q

From both the 2D and 3D plots, the graphs represent the relationship of log likelihood against p and q
parameters which we are trying to obtain the best parameter values in order for the observed data to be
most probable. In the 2-dimensional plot, the highest likelihood value is around -176, where we can gain
estimates of p and q values, which we can also derive r from the Hardy-Weinberg equilibrium, where the
allele r is given by r=1-p-q. In the 3-dimensional plot, the yellow area provides the best parameter values
as the likelihood function is the highest here.

Gene Counting Algorithm
The gene-counting algorithm is an example which demonstrates how the maximum likelihood function is
used in the non-linear optimisation method. With constraints such as:

p = (
1

2n
) ∗ (nAB + nA ∗ (1 + hA)) (10)

q = (
1

2n
) ∗ (nAB + nB ∗ (1 + hB)) (11)

r = 1− p− q (12)

3

hA =
p

p+ 2r
(13)

hB =
q

q + 2r
(14)

This is computationally carried out with Python. The number of optimization rounds is unknown. The gene
counting function with constraints above is called in an infinite loop, and in every iteration, the difference
between the new optimized parameter value (p, q, r) and old values before optimization is calculated. When
the difference for each parameter is smaller than a significant constant, 10e5, the infinite loop is stopped
where the results for log likelihood and parameter values are then plotted.

As shown in Figure 1 and 2, the gene counting algorithm is non-decreasing. Mathematically, this could be
proven by the first derivative of log likelihood function where the derivative is always bigger than 0. In
terms of visualisation from the 2D and 3D plots, when the gene counting algorithm is run multiple times,
the function is always going up.

Appendix

Python Script/Code

#!/ usr / b in /env python3
−∗− coding : u t f −8 −∗−
"""
Created on Sat Sept 3 09 :10 :08 2022

@author : bananabelyong
"""
import numpy as np
import matp lo t l i b . pyplot as p l t

from f un c t o o l s import p a r t i a l

def est imat ion_equat ions (nA, nB, nAB, nO, hA, hB) : #packaged phenotypes and hA, hB
"""
Function i s c a l l e d e s t ima t ion equa t ions to d e f i n e equa t ions 1.9 and 1.10 from ABO blood group paper t ha t are r equ i r ed to
c a l c u l a t e p , q , r , and hA and hB in an i n f i n i t e loop .
"""
i n i t i a l i z e sample s i z e
n = nA + nB + nAB + nO

ca l c u l a t e p , q , r from given hA and hB from i n i t i l i z a t i o n .
p = (1/(2 ∗ n)) ∗ (nAB + nA ∗ (1 + hA))
q = (1/(2 ∗ n)) ∗ (nAB + nB ∗ (1 + hB))
r = 1 − p − q

hA = p / (p + 2∗ r)
hB = q / (q + 2∗ r)

return p , q , r , hA, hB

def l o g_ l i k e l i h ood (nA, nB, nAB, nO, p , q , r) :
"""
Code s t r u c t u r e c a l c u l a t e s the l o g l i k e l i h o o d accord ing to ZiHeng ’ s emai l comments
"""
+=adds another va lue wi th the v a r i a b l e ’ s va lue and a s s i gn s the new va lue to the v a r i a b l e

4

ca l c u l a t e l o g l i k e l i h o o d from A, B, AB and O count r e s p e c t i v e l y .
lnL=nA ∗ np . l og (p∗∗2 + 2∗p∗ r)
lnL+=nB ∗ np . l og (q∗∗2 + 2∗q∗ r)
lnL+=nAB ∗ np . l og (2∗p∗q)
lnL+=nO ∗ np . l og (r ∗∗2)

return lnL

def gene_counting () : #run gene count ing a l gor i thm in a loop
i n i t i a l i z e parameters
nA = 44 ; nB = 27 ; nAB = 4 ; nO = 88 #sample g iven from Morton (1964)
hA = 0 . 5 ; hB = 0 .5 # i n i t i a l gue s se s f o r hA and hB

ab s_c r i t e r i a = 1e−5 #loop terminat ion c r i t e r i a

#i n i t i a l i z e parameters and l o g l i k e l i h o o d
p , q , r , hA, hB = est imat ion_equat ions (nA, nB, nAB, nO, hA, hB)
p_old = p
q_old = q
r_old = r

p l i s t = [] ; q l i s t = [] ; r l i s t = []
p l i s t . append (p)
q l i s t . append (q)
r l i s t . append (r)

l nL_l i s t = []
l nL_l i s t . append (l o g_ l i k e l i h ood (nA, nB, nAB, nO, p , q , r))

run a lgor i thm
while True : #i n f i n i t e loop

es t imate new parameter va l u e s
p , q , r , hA, hB = est imat ion_equat ions (nA, nB, nAB, nO, hA, hB)
p l i s t . append (p)
q l i s t . append (q)
r l i s t . append (r)

ca l c u l a t e l o g l i k e l i h o o d
l nL_l i s t . append (l o g_ l i k e l i h ood (nA, nB, nAB, nO, p , q , r))

f ind a b s o l u t e d i f f e r e n c e o f o l d and new parameters p , q , r
p d i f f = np . abs (p_old − p)
q d i f f = np . abs (q_old − q)
r d i f f = np . abs (r_old − r)

terminat ion cond i t i on
i f (p d i f f < ab s_c r i t e r i a and q d i f f < ab s_c r i t e r i a) and r d i f f < ab s_c r i t e r i a :

break

i f terminat ion cond i t i on f a i l s , s t o r e new parameter va l u e s as o ld va l u e s
p_old=p
q_old=q
r_old=r

5

print ("Log␣ L ike l i hood ␣Values ")
print (l nL_l i s t)

print (’P␣ va lues : ’)
print (p l i s t)
print (’Q␣ va lues : ’)
print (q l i s t)
print (’R␣ va lue s : ’)
print (r l i s t)
"""
p l o t p vs q
f i g = p l t . f i g u r e (f i g s i z e =(8 ,6))

p l t . p l o t (p l i s t , q l i s t , ’ r −’)
p l t . x l a b e l (’ p ’)
p l t . y l a b e l (’ q ’)
"""
2D contour f i g u r e
f i g 2 = p l t . f i g u r e (f i g s i z e =(8 ,6))
ax = f i g 2 . add_subplot (111)

P, Q = np . meshgrid (p l i s t , q l i s t)

lnL_part ia l = p a r t i a l (l og_l i k e l i hood , nA=nA, nB=nB, nAB=nAB, nO=nO)

LnL = lnL_part ia l (p=P, q=Q, r=1−P−Q)
contours = ax . contour (P, Q, LnL , 10 , c o l o r s=’ b lack ’ , alpha =0.4)
ax . s e t_x labe l (’p ’)
ax . s e t_y labe l (’ q ’)
ax . c l a b e l (contours , i n l i n e=True , f o n t s i z e =8, fmt=’%.0 f ’)

ax . s e t_ t i t l e (’ 2D␣ contour ’)

3D contour f i g u r e
f i g 3 = p l t . f i g u r e (f i g s i z e =(8 ,6))

P, Q = np . meshgrid (p l i s t , q l i s t)

ax2 = p l t . axes (p r o j e c t i o n=’ 3d ’)
ax2 . contour3D (P, Q, LnL , 100 , cmap=’ plasma ’)
ax2 . s e t_x labe l (’p ’)
ax2 . s e t_y labe l (’ q ’)
ax2 . s e t_z l abe l (’ l og ␣ l i k e l i h o o d ’)
ax2 . s e t_ t i t l e (’ 3D␣ contour ’)

p l t . show ()

i f __name__=="__main__" :
gene_counting ()

6

