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Introduction

Heart failure affects over 64 million people [1] forming the leading cause of hospitalization worldwide [2].

Heart failure results in significant morbidity and mortality presenting a considerable social and economic

burden, amounting to 2% of the total health costs in developed countries [2][1]. Alarmingly deaths from

cardiovascular disease (CVD) have increased by 60% since 1990s, rising from 12.1 million to 20.5 million by

2021. Subsequently, this rise in heart disease has led to a growth in biomedical data, increasing the complexity

of assessing heart failure by identifying an overwhelming number of potential contributing factors, such as

gender [3], smoking [4], and physical activity [5]. The intricacy of the cardiovascular system and the complex

causes of heart failure require the amalgamation of various data streams, including clinical test results,

medical imaging, and patient demographic information. [6]. This has made it challenging to pinpoint the

main contributing factors of heart failure reliably and manually. Therefore, building an effective strategy

that can utilize large amounts of data for the preliminary detection of disease, the assessment of heart disease

severity and the early estimation of adverse events is becoming progressively required.

How can ML help?

One tool that has been used to address this is machine learning (ML). ML has attempted to detect heart

disease in previous cases [7][8][9][10] drawing significant attention in medical diagnostics. This is because

ML can recognize patterns that are not immediate to human practitioners [11], by handling large volumes

of data, and navigating the complex interactions of the numerous factors associated with heart failure.

One such ML model implemented, is the Random Forest (RF) model. Within this study, we explore the

reliability of RF for predicting heart failure considering data quality, feature engineering, model performance

and hyperparameter tuning with Bayesian Optimisation.
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Methodology

Figure 1: Machine Learning Pipeline for Heart Failure Prediction. This figure illustrates the methodology
overview from data collection to model evaluation.

Dataset Description & Exploratory Data Analysis

With the Heart Failure prediction dataset from Kaggle [12], we performed EDA to investigate the charac-

teristics of 918 observations which contain 11 predictor variables and 1 binary target feature. From Table 1,

the dataset’s predictor variables included continuous numerical variables such as age, resting blood pressure,

cholesterol and maximum heart rate achieved (MaxHR). It contains categorical variables such as sex and

‘chestpaintype’. The binary target feature ‘HeartDisease’ indicates whether the individual has heart disease

(1) or not (0). Preliminary checks include establishing the coherence of dataset by looking at missing val-

ues, duplicated rows and significant outliers, shown in Figure 3. However, upon removing outliers, dataset

reduced to 518 observations which might decrease dataset integrity so these observations are retained. No

missing values or duplicated rows were identified. In Appendix 1.5, with Figures 10 and 11 show additional
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dataset characteristics.

Table 1: The heart disease dataset attributes detailed information
Attribute Dataset Description Values/Range

Age Numerical and Continuous 28–77
Sex Categorical with cardinality 2 M or F
ChestPainType Categorical with cardinality 4 ATA, NAP, ASY, TA
RestingBP Numerical and Continuous 0–200 [mm Hg]
Cholesterol Numerical and Continuous 0–603 [mm/dl]
FastingBS Numerical and Binary 0 or 1
RestingECG Categorical with cardinality 3 Normal, ST, LVH
MaxHR Numerical and Continuous 60–202
ExerciseAngina Categorical and Binary Yes or No
Oldpeak Numerical and Continuous −2.6 to 6.2
ST_Slope Categorical with cardinality 3 Up, Flat or Down
Heart Disease Numerical and Binary 0 or 1

With Pearson’s Correlation Coefficient metric, we used seaborn heatmap function to visualize the re-

lationships between the predictor and target variables. It can be seen in Figure 2, that all predictors are

moderately correlated with ‘HeartDisease’ except for RestingECG (0.057). Despite this, we have maintained

this variable in our dataset as numerous literature have demonstrated that this is a significant feature in

heart failure prediction [13][14][15].

Figure 2: Pearons’s Correlation Coefficient Heatmap of ’heart.csv’ illustrating relationship between individual
predictor variables and target variable against each other
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Figure 3: Outliers detected in ’heart.csv’ dataset where RestingBP and Cholesterol show the highest number
of outliers

Data Preprocessing: Feature Selection & Engineering

The categorical features underwent cardinality checks to determine the suitability of encoding techniques,shown

in Figure 4A. Low cardinality in features ‘Sex’, ‘ChestPainType’, ‘RestingECG’, and ‘ST_slope’ indicated

one-hot encoding could be applied without concerns of dimensionality explosion [16]. We encoded categor-

ical variables using one-hot-encoding. To diagnose multicollinearity, complementary to Pearson’s heatmap,

we used variance inflation factor (VIF) to prevent inaccurate prediction results in the ML models. Multi-

collinearity is present when VIF is higher than 10 [17]. In Figure 4B, age, MaxHR and RestingBP show

significantly high values (31.33, 26.17, and 47.45 respectively). However, when these factors were compared

to the heatmap and literature [18][19][20], they demonstrate a relationship between these factors and heart

failure. Therefore, we retained the 3 factors. From the preprocessing steps, the new dataset is shown below

in Figure 5.
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Figure 4: A) Bar chart illustrating cardinality of 5 categorical features- how many unique variables present;
B) Variance Inflation factor (VIF) of features in ’heart.csv’ dataset; C) VIF of features in ’heart.csv’ when
the high VIF attributes: Age and RestingBP are removed
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Figure 5: Preprocessed ’heart_num_filtered.csv’ dataset all with numeric columns for ML implementation

Machine Learning Models Implementation

This study is designed to evaluate the performance of Random Forest (RF) algorithm against 5 other

established binary classification ML models. We hypothesize that RF algorithm would be the best suited for

this binary classification task based on numerous literature which utilize analogous heart datasets [21][22][23].

RF is an effective algorithm for binary classification tasks because it builds multiple decision trees and merges

them together for a stable prediction. RF has the capacity to handle large datasets with numerous variables

making it particularly suitable for complex medical datasets where multiple factors influence the outcome

[22].

The dataset was randomized and partitioned into training and test set using train_test_split() function,

80% and 20% respectively, where the test set is utilized for evaluation purposes. The StandardScaler()

function was used for feature scaling (normalization), to ensure that every feature varies within the same

range. For ML implementation, this ensures that features with wider numerical ranges do not dominate,

which may bias analysis towards less informative attributes. Feature scaling will be able to mitigate the

phenomenon and consequently improve ML classification performance [24][25]. Each model was trained using

the same training and test set to standardize the performance evaluation.

The 5 other supervised learning algorithms, extracted from relevant literature on specific analogous heart

failure datasets, were Logistic Regression [26], Gaussian Naïve Bayes[27], AdaBoost [28], GradientBoost [29],

and Support Vector Machines [30]. In Appendix 1.2, it explains how these 5 algorithms perform this binary

classification task.
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Appropriate Evaluation Metrics

The appropriate evaluation metrics hinges on the data characteristics and the model’s binary classification

task. For this study, we employed 5 metrics on the test set to assess the RF model’s performance against 5

other algorithms. From Figure 6, our imbalanced dataset with differing counts of presence of heart disease,

indicates that we needed more than just accuracy as it can be misleading alone, since it does not distinguish

between numbers of correctly classified examples of different classes. [31]. The area under receiver operating

(AUC) curve provides a robust measure, evaluating models at various classification thresholds, which is more

informative than just the F1 score [32]. Precision and recall will offer additional insights into model’s ability

to correctly identify positive cases and trade-off between the two. These metrics, detailed in Appendix 1.3,

are required for evaluation of the model’s capabilities where balance between sensitivity (recall) and precision

is important [33].

Figure 6: Barplot of Counts of 0’s and 1’s in the preprocessed ’heart_num_filtered.csv’

Bayesian Optimization Hyper-parameter Tuning of Random Forest

For our proposed method RF, we wanted to verify whether hyperparameter optimization would increase

the model’s performance significantly, as suggested in literature [34][35][36]. For RF, the hyperparameter

space was carefully defined into 4 key parameters of the RandomForestClassifier which are n_estimators,

max_depth, min_samples_split and max_features [34]. These were set up with the code in Appendix 1.4,

with specified bounds to ensure computational efficiency. The objective function for Bayesian optimization
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(BO) was established using the negative mean squared error (MSE), derived from a 3-fold cross-validation

of the training set. Less negative MSE indicates higher accuracy so the aim is to maximise the objective

function. Best parameters were retrieved after 5 initial random runs and 15 BO steps. Model with tuned

hyperparameters were assessed on the test set, with same metrics as described above.

Results: How does Random Forest perform?

Table 2 compares RF to other ML models. LR balances well, with 84.78% accuracy and 86.27% F1 score,

yet recall issues affect its F1 score. RF outshines LR, boasting the top accuracy (88.59%) and F1 score

(90.32%), reflecting better precision-recall harmony. GaussianNB is consistent in labeling positives despite

lower accuracy (84.24%) and precision. SVM shows robustness with high accuracy (86.41%) and the best

AUC (94.91%). AdaBoost, while precise, trades off with lower recall, impacting its F1 score (86.83%).

GradientBoost’s performance is solid, with slight room for improvement in recall and F1 score.

Table 2: Model evaluation metrics
Model Accuracy AUC Precision Recall F1 Score

Logistic Regression (LR) 0.847826 0.900837 0.907216 0.822430 0.862745
Random Forest (RF) 0.885870 0.943848 0.924528 0.882883 0.903226
Gaussian Naïve Bayes (GaussianNB) 0.842391 0.908970 0.882353 0.841121 0.861244
Support Vector Machine (SVM) 0.864130 0.949144 0.894231 0.869159 0.881517
AdaBoost classifier 0.853261 0.914735 0.908163 0.831776 0.868293
GradientBoost Classifier 0.875000 0.936521 0.920000 0.859813 0.888889

Initially, the RF model achieved an accuracy of 88.59%, the best among the ML models implemented. In

Table 2, the model’s AUC of 0.9438 reflects its strong discriminative ability to differentiate between classes.

Precision, at 92.45%, indicates a high rate of true positive predictions relative to all positive predictions made,

while a recall of 88.29% shows that the model correctly identified a large proportion of actual positives. The

F1 Score of 90.32% suggests a well-balanced model considering both precision and recall.

Table 3: Comparison of Random Forest model performance with and without Bayesian Opti-
mization
Model Accuracy AUC Precision Recall F1 Score

Random Forest 0.885870 0.943848 0.924528 0.882883 0.903226
Random Forest + Bayesian Optimization (BO) 0.902174 0.946131 0.926606 0.909910 0.918182

Table 3 compares the performance of the RF classifier before and after BO hyperparameter tuning. After

applying BO for hyperparameter tuning, the model’s performance improved across all metrics. Accuracy

increased to 90.22%, showing that the model makes more correct predictions post-tuning. The AUC saw a
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slight improvement to 0.9461, which suggests a marginal increase in the model’s ability to distinguish between

classes. Notably, precision improved to 92.66%, and recall saw a significant rise to 90.99%, indicating that

the model is now more effective at identifying true positives. The F1 Score increased to 91.82%, confirming

that the tuned model provides a better balance between precision and recall.

Discussion & Evaluation

Improvements to Random Forest Model

Overall, standard RF outperforms the other models, and RF + BO outperforms all. The standard RF

algorithm has demonstrated performance over other standard models in the comparative analysis for several

reasons. Aside from the evaluation metrics, RF is more computationally efficient as it is an embedded

method where feature selection is integrated into the classifier algorithm, where they rank importance based

on metrics on Gini’s Importance score [37]. In this study, we can attempt to understand how each feature

contributes to the RF predictions to further improve the feature engineering/selection component of model

implementation. As there is a built-in feature importance with sci-kit learn for RF, we used this to analyze

the results of the feature importance as shown in Figure 7 below.

Figure 7: Ranking of ’heart_num_filtered.csv’ features with Gini’s Impurity Score, an embedded function
in Random Forest

Consequently, the RF model can be improved by removing less important features to reduce model
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complexity (potentially Fasting Blood Sugar from Figure 7), which can help prevent overfitting. Additionally,

we can investigate and integrate analogous datasets which contain more important features that are related

to the heart failure such as systolic patient’s systolic and diastolic blood pressure [38], and patient’s history

on smoking and alcohol intake. Another problem we can investigate into to attempt improving model’s

performance is data leakage. This problem introduces information from the test set or target variable into

training process, artificially inflating model performance on training data but diminishing its effectiveness

on the new data [39]. Such leakage can cause RF algorithm to overestimate the importance of features that

correlate with the target, despite lack of true predictive power. This misleads confidence in both model’s

accuracy and significance of these features [40]. From Figure 7 above, we can attempt to remove most

important features to validate whether they are important or it is a data leakage phenomenon.

From Table 3, RF with Bayesian Optimization (RF+BO) outperforms the standard RF model, based

on the evaluation metrics. With BO, this takes into account previous iterations results when choosing the

next hyperparameters which makes it relatively more suitable than random/ grid search [41]. However, it

is worth exploring other alternative optimisation algorithms or feature selection methods such as recursive

feature elimination (RFE) [29] as it is shown by Burcu et. Al (2018) [42] to improve the RF’s performance

when combined with RFE with a high dimensional biomedical dataset.

Improvements to Study

Additionally, for the improvement of experimental design, we could have explored different data preprocessing

techniques such as other normalization techniques such as Variable Stability Scaling [24], which might lead to

different insights, potentially better. More advanced ensemble techniques like XGBoost or LightBGM could

have also been investigated in this study to accurately compare a model for this heart failure prediction task.

Moreover, hyperparameter tuning of the 5 other ML classifiers should have also been evaluated instead of

just the best standard model proposed in this study. Including other detailed evaluation metrics such as

ROC curve plots would offer a more nuanced view of model performance.

Conclusion

Challenges of deploying Random Forest + Bayesian Optimisation model in clin-

ical settings

In deploying RF+BO models in clinical settings, arise primarily from the varied and complex nature of

clinical data. These range from converting unstructured health records into formats which ML algorithms
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can interpret, to ensuring that the models remain accurate as healthcare practices evolve and patient data

changes. This latter point, known as data shift[43], can significantly degrade model performance if not

properly managed, leading to unreliable predictions. Furthermore, constructing efficient data pipelines to

handle the diversity and velocity of clinical data is critical, requiring sophisticated systems to collect, process,

and feed data into ML models without significant delays. Addressing these challenges is essential for the

successful integration of ML into clinical workflows, ensuring that predictions are timely, accurate, and free

from bias, ultimately supporting better patient outcomes.
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Appendix

1.1 Code Availability

Raw files was extracted from Kaggle, such as linkedin here ’Heart.csv’. Cleaned CSV is desposited on

Github. The data preprocessing, exploratory data analysis model development and hyperparameter tuning

with Bayesian optimisation are available in my Github repository (AI4BH).

• EDA was partitioned into 2 parts as linked: 1) ’AI4BH_EDA_part1_real.ipynb’ 2) AI4BH_EDA_part2_real.ipynb’

• Model Development had 6 different model evaluated with the respective model packages from sklearn

as shown here, AI4BH_model_development.ipynb.

• Hyperparameter tuning of RF is as linked here: AI4BH_hyperparameter_tuning.ipynb
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1.2 5 ML Classifiers for Binary Classification- how do they work?

Logistic Regression

The logistic regression model [26] is a commonly used statistical method to predict the probability of a

binary outcome. In the context of the heart failure dataset, the logistic regression model can be represented

as follows:

prob(Y = 1) =
ez

1 + ez
(1)

where Y refers to the binary dependent variable representing the occurrence of heart failure (with Y = 1

if the event of heart failure happens, and Y = 0 otherwise). The term e stands for the base of natural

logarithms, and z is the linear combination of predictors given by

z = β0 + β1X1 + β2X2 + . . .+ βpXp (2)

Here, β0 is the constant term, βj are the coefficients that represent the contribution of each predictor Xj

towards the outcome, for j predictors (j = 1, 2, . . . , p). Each predictor Xj corresponds to a different feature

in the heart failure dataset, such as age, blood pressure, cholesterol levels, and other clinical measurements

that could influence the risk of heart failure.

Gaussian Naïve Bayes

Gaussian Naïve Bayes [27] is a probabilistic classifier that extends the Naïve Bayes algorithm to continuous

data; it is particularly useful when the features of a dataset are not binary. This approach assumes that the

continuous values associated with each feature are distributed according to a Gaussian distribution. In the

context of heart failure prediction, Gaussian Naïve Bayes can classify patient outcomes based on continuous

health indicators such as blood pressure, cholesterol levels, and heart rate.

The classification process involves the following steps:

1. Calculate the mean and standard deviation for each feature within the dataset.

2. Apply the Gaussian probability density function to each feature value for a given class, which is defined

as:

P (xi|y) =
1√
2πσ2

y

exp

(
− (xi − µy)

2

2σ2
y

)
(3)

where xi is a feature value, µy is the mean of the feature for class y, and σ2
y is the variance of the

feature for class y.
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3. Multiply the probabilities of each feature value for a given class, assuming feature independence, and

then use the class’s prior probability to find the class probability.

4. Predict the class with the highest probability as the outcome for heart failure.

By applying these steps, Gaussian Naïve Bayes can effectively classify instances in the heart failure dataset

and predict whether a new patient is likely to experience heart failure based on their health indicators.

Adaboost Classifer

AdaBoost, or Adaptive Boosting [28], is a powerful ensemble technique used for classification tasks, including

heart failure prediction. It iteratively trains weak classifiers, typically decision stumps, with each subsequent

classifier focusing more on the training instances that previous classifiers misclassified. The final model

aggregates the weak classifiers into a weighted sum that represents the final output of the strong classifier.

This process is mathematically captured by the following equation for the classifier weight:

αt =
1

2
ln

(
P+1

P−1

)
, (4)

where αt is the weight for the classifier at iteration t, and P+1 and P−1 are the probabilities of the correctly

classified instances and misclassified instances, respectively. The output of AdaBoost is a combination of

the weak classifiers’ decisions, each weighted by its corresponding αt, which together form a strong classifier

that is used to predict heart failure events.

GradientBoost Classifier

The Gradient Boosting Classifier [44] is an advanced machine learning technique that is particularly effective

for predicting outcomes like heart failure. It uses the concept of boosting weak learners, typically decision

trees, to create a strong predictive model. The classifier optimizes a log-likelihood loss function, which for

binary classification is given by:

L = −
n∑

i=1

[yi log(p) + (1− yi) log(1− p)] (5)

Here, yi represents the true outcome, and p is the predicted probability. The loss function is minimized

using the gradient descent method, where residuals are computed as:

r = − ∂L

∂log(odds)
(6)
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These residuals are then used to fit new learners to predict the log(odds) of heart failure, which are then

scaled by a factor αt and added to update the model:

αt =
1

2
log

(
P+1

P−1

)
(7)

The final prediction is made by summing the contributions of all the trees, with each tree’s output being

a function of the residuals from the previous tree, adjusted by the learning rate. This additive model allows

the classifier to focus on the most challenging cases in the heart failure dataset, thus improving its predictive

performance with each iteration.

Support Vector Machine

SVM [30] has shown effectiveness in distinguishing patients with and without heart failure by finding the

optimal hyperplane that maximizes the margin between classes, offering a high level of accuracy in heart

disease.

1.3 Details of Evaluation Metrics

These are the descriptions of the metrics, obtained from [21] used in our study.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Accuracy indicates the number of samples that were accurately corrected for a given total number of samples.

Precision =
TP

TP + FP
(9)

Precision indicates the number of samples that were accurately corrected for a given total number of samples.

Recall =
TP

TP + FN
(10)

Recall indicates the prediction of positive values to the actual positive value.

F1 score =
2× Recall × Precision

Recall + Precision
(11)

F1 score is the harmonic mean of precision and recall.

Where:

• TP (True Positive) is the number of correct predictions that an instance is positive,
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• TN (True Negative) is the number of correct predictions that an instance is negative,

• FP (False Positive) is the number of incorrect predictions that an instance is positive,

• FN (False Negative) is the number of incorrect predictions that an instance is negative.

AUC, which stands for Area Under the Receiver Operating Characteristic (ROC) Curve, is a performance

measurement for classification problems at various threshold settings. The ROC is a probability curve that

plots the true positive rate (sensitivity) against the false positive rate (1-specificity) at different classification

thresholds. The AUC represents the degree to which the model is capable of distinguishing between classes.

The higher the AUC, the better the model is at predicting 0s as 0s and 1s as 1s. An AUC of 0.5 suggests no

discrimination (no better than random guessing), while an AUC of 1.0 denotes perfect prediction.
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1.4 Hyperparameter Optimization of Random Forest Model

Figure 8: Hyperparamter tuning with Bayesian Optimization on Random Forest Classifier part 1
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Figure 9: Hyperparamter tuning with Bayesian Optimization on Random Forest Classifier part 2
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Mathematical Intuition behind Bayesian Optimisation

Bayesian Optimization (BO) for hyperparameter tuning in Random Forest models seeks to maximize an

objective function, typically the negative mean squared error (MSE), to enhance model performance. The

objective function f in BO, represented by a Gaussian Process (GP), is given by:

f(x) = −MSE(x) (12)

where x represents the hyperparameters. The GP provides a probabilistic estimate of f and is updated

iteratively using observed data. The acquisition function, such as Expected Improvement (EI), is employed

to select the next hyperparameters to evaluate, aiming to find the maximum of f :

xnext = argmaxEI(x) (13)

This process systematically improves the Random Forest model by focusing the search on areas of the

hyperparameter space that are likely to yield a lower negative MSE.
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1.5 Additional Figures

Figure 10: Relationship between each attribute against each other in heart.csv dataset
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Figure 11: Distribution of numerical and continuous variables in heart.csv dataset against target variable,
HeartDisease
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Figure 12: Distribution of best hyperparameters of Random Forest Classifier algorithm after 20 iterations

Figure 13: Visualisation of decision trees in random forest implemented on heart_num_filtered.csv
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