
6 1 Introduction

Table 1. Observed counts of ABO blood type counts in a British population

Phenotype (i) Genotype Probability Count (ni) Frequency ( fi)

A AA,AO p2 + 2pr nA = 44 0.26994
B BB,BO q2 + 2qr nB = 27 0.16564
AB AB 2pq nAB = 4 0.02454
O OO r2 nO = 88 0.53988

Sum 1 n = 163 1

Note.— [Perhaps use instead the following data from Morton (1964) and Yasuda and Kimura
(1968), with n = 2128 for a Brazilian population: nA = 725, nB = 258, nAB = 72 and
nO = 1073, with the MLEs p̂ = 0.209131, q̂ = 0.080801, and r̂ = 0.710068. Perhaps include
that dataset as an exercise.]

Applications used in the book

Example 1. Estimation of allele frequencies in the ABO blood group
The ABO blood type is determined by the presence or absence of the A and B antigens on
erythrocytes. It is controlled by a single gene (the ABO gene) with three alleles: IA, IB, and
i. Here I stands for isoagglutinogen or antigen, while i means absence of either antigen. For
convenience we write the three alleles as A,B, and O. As both A and B alleles are dominant
over O, genotypes AA or AO both have the same phenotype (type A), and individuals with BB
or BO have type B. At Hardy-Weinberg equilibrium, the genotype and phenotype frequencies
are given as functions of the frequencies of the three alleles, p, q, and r = 1− p− q. The data,
X = (nA,nB,nAB,nO), are counts of the four blood types. The probability of observing the data is
given by the multinomial distribution with four categories

p(X |p,q) = (p2 + 2pr)nA · (q2 + 2qr)nB · (2pq)nAB · (r2)nO (1.7)

(see table 1). Our objective is to estimate allele frequencies p and q using the observed blood-type
counts in table 1 for a British population (Cavalli-Sforza and Bodmer, 1971).

Heuristics. There are three free observed proportions ( fi) and two unknowns, so one does not
expect a perfect match between the expected and observed proportions. As a heuristic estimator,
we can let r̂ =

√
fO = 0.734765, then calculate p̂ and q̂ from fA and fB, ignoring fAB. We can

check how far away 2p̂q̂ is from fAB. One can massage the estimates to be more consistent with
the observed proportions.

Maximum likelihood. The ML method estimates the parameters by maximizing the likelihood
function L(p,q) = p(X |p,q), or its logarithm, i.e., the log-likelihood function

ℓ(p,q) = nA log(p2 + 2pr)+ nB log(q2 + 2qr)+ nAB log(2pq)+ nO log(r2). (1.8)

In theory one can set the derivatives of the log likelihood with respect to p and q to 0 and solve
the resulting equations but those are not tractable analytically. Numerical optimization algorithms
could be used solve the 2-D optimization problem. Here we use the gene-counting algorithm
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Table 2. The gene-counting algorithm for the ABO allele frequencies

Round (k) h(k)A h(k)B p(k) q(k) r(k) ℓ

0 0.5 0.5 0.21472 0.13650 0.64877 −181.022
1 0.14199 0.09519 0.16640 0.10298 0.73062 −175.505
2 0.10224 0.06583 0.16104 0.10054 0.73842 −175.449
3 0.09832 0.06374 0.16051 0.10037 0.73912 −175.448
4 0.09795 0.06358 0.16046 0.10036 0.73918 −175.448
5 0.09791 0.06357 0.16045 0.10036 0.73919 −175.448
6 0.09791 0.06357 0.16045 0.10036 0.73919 −175.448

developed by CAB Smith of University College London (Ceppelini et al., 1955, Smith, 1957;
see also Yasuda and Kimura, 1968). This is a version of the Expectation-Maximization (EM)
algorithm, a broadly applicable algorithm for computing maximum likelihood estimates from
incomplete data. EM has been discovered many times in different disciplines, and is particularly
widely used in finite-mixture problems (Dempster et al., 1977), but the version developed in
genetics appears to be the earliest. Here we describe the algorithm. The algorithm is known to
be non-decreasing; in other words, the likelihood will only increases but not decrease during the
iteration and will converge to the MLE. However here we will not attempt a proof; see Dempster
et al. (1977).

The idea is that if we knew the genotypes of blood types A and B, we could calculate the allele
frequencies by simple counting. Let hA be the proportion of homozygote AA among individuals
having blood type A, and hB be the proportion of BB among type B. Then

p =
1

2n

[
nAB + nA(1+ hA)

]
,

q =
1

2n

[
nAB + nB(1+ hB)

]
.

(1.9)

Furthermore, given the allele frequencies (p,q,r = 1− p− q), hA and hB can be calculated
from their definitions as

hA =
p2

p2 + 2pr
=

p
p+ 2r

,

hB =
q2

q2 + 2qr
=

q
q+ 2r

.
(1.10)

Thus we have an iterative algorithm going through eqs. 1.9 and 1.10. We can start with initial
values for (hA,hB), calculate (p,q) using eq. (1.9), and then update (hA,hB) using eq. (1.10).
Repeat until the parameters stabilize. Table 1 shows the progress of the algorithm, with the start-
ing values (hA,hB) = (0.5,0.5). We print out the log likelihood as well although the algorithm
does not require its explicit calculation. The MLEs are p̂ = 0.16045 and q̂ = 0.10036 (with
r̂ = 0.73919), at which the maximized log likelihood (eq. (1.8)) is ℓ( p̂, q̂) = −175.44834. One
can also lower the log likelihood by 1

2 χ2
2,5% = 1

2 × 5.99 = 3.00 to construct a 95% confidence
region for p and q.

Bayesian solution. In a Bayesian analysis, we assign the uniform Dirichlet prior

f (p,q) = 2, p > 0,q > 0, p+ q < 1. (1.11)
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Figure 1. Joint posterior of p and q for alleles A and B in the ABO blood-group example, using (a) the random-scan
and (b) systematic-scan algorithms. The first 30 iterations of four runs with different starting values are show. The

density contours are constructed using 2-D kernel-density smoothing using a long run with 106 samples.

We consider an MCMC algorithm that consists of three simple steps:

• Step 1 (diagonal move): change p and q with their sum fixed.

• Step 2 (vertical move): change q and r with their sum fixed.

• Step 3 (horizontal move): change r and p with their sum fixed.

The three steps make diagonal, vertical, and horizontal moves, respectively, in the p–q plane.
We use the same window size w = 0.125 for the three moves. The posterior means and 95%
equal-tail intervals are in table 3. Posterior means are 0.1623 0.1026 0.7351 for p,q, and r,
respectively.

The acceptance rates are 0.3576, 0.4178, 0.4957 for the three steps. As different parameters
have slightly different precisions, use of the same sliding window w in all three steps is not
optimal. Acceptance should be the lowest for the first move (since p and q have narrow CIs), and
highest for the third move (since r and p have large CIs). In other words, our step is too large for
the first move and too small for the third move.

We use either random scan or systematic scan, with the initial state (p,q) = (0.25,0.25). With
the random scan, each MCMC iteration consists of one of the three steps sampled at random. Run
time on a PC for 106 iterations using the R code was 6.5s. With systematic scan, each MCMC
iteration consists of the three steps in a fixed or random-permuted order. Acceptance rates are the
same as before. Run time was 15.8s, about 3 times as long as for random scan. Thus systematic
scan takes about three times as much computation, and is about 3 times as efficient as random
scan.

C program: Running time for 108 iterations is 12s for random scan, 27s for systematic scan,
and 33s for systematic scan with permutation of the three steps. The C program is about 50 times
faster than the R code.
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Table 3. Summary of MCMC algorithms applied to the ABO blood-group data

CI Efficency

Parameter Posterior mean (CI) width SD random systematic1 systematic2

p 0.1622 (0.123, 0.206) 0.083 0.0212 0.102 0.116 0.114
q 0.1026 (0.071, 0.138) 0.067 0.0172 0.127 0.143 0.141
r 0.7351 (0.682, 0.784) 0.102 0.0254 0.086 0.100 0.099
Run time (N = 106), R 6.5s 15.8s/3
Run time (N = 108), C 12s 27s/3 33s/3

Note.— Systematic2 shuffles the three steps. Efficiency for systematic-scan is calculated by sampling
after each step. Thus each iteration of the systematic scan with 3 steps is as efficient as 3 iterations of the

random scan. Random permutation of the three steps in the systematic scan had no impact on mixing
efficiency. [From this table we should be able to say something about the relative efficiency of 1× p D

move vs. p×1D moves in a model with p parameters?]

Example 2. Change-point process model for coal mine fatalities
data
From Green (1995). A data set that has been frequently used in illustrating new methods for
change-point analysis is the point process of dates of serious coal-mining disasters between 1851
and 1962, given by Raftery and Akman (1986). In contrast to some other previous analyses of
these data, we will work in continuous time, with the points recorded in days rather than years.
Figure 1 displays the dates of the 192 disasters in these 112 years = 40 907 days as a jittered
dot plot, together with the cumulative counting process, shown as a dotted line. For data points
i = 1,2,n from a Poisson process with rate given by the function X(t), the log-likelihood is

Example 3. Change point process model for archaeological data
From Brooks (1998). A simple change-point model. To explain, in greater detail, exactly how
to formalize statistical problems for use with MCMC algorithms, we follow Buck et al. (1993)
who used a non-linear regression model with a single change-point, to describe the shape of
prehistoric corbelled tombs. Data were collected concerning the shapes of corbelled tombs at sites
throughout the Mediterranean. The data consist of a series of measurements of depth from the
apex of these tombs, d, and the corresponding radius r; see Buck et al. (1993) and Fig. 2. Having
obtained data from tombs at different sites, we try to model the data from each tomb separately, to
ascertain whether or not different civilizations used similar technologies to construct the tombs,
resulting in tombs of similar shapes and therefore models with similar fitted parameters.
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Figure 2. Shape of the inside of an ideal corbelled tomb with a capping stone.


