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Introduction: 
 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder which causes adverse effects on 

social communication and presence of restricted interests[1][2]. ASD is a complicated disorder where 

statistically it affects more than 1 in 100 people in the UK[2]; there are around 700,000 autistic adults 

in the UK[2]. This is an interesting prevalent field of research where researchers now are attempting 

to understand the exact genetic mechanism behind ASD due to the increase in accessibility in next 

generation sequencing (NGS)[3] and popularity of advancing scientific technologies such as high 
throughput genotyping[3][4]. Through these advanced research methodologies, scientists have shown  

that mutations occurring in specific genes on particular chromosomes of humans[5], would lead to 

ASD. Using a bioinformatics and genetic approach to overcome and understand the complexity of this 
disease, the workflow includes literature mining search to research on gene-ASD associations through 

Simons Foundation Autism Research Initiative (SFARI) database[6], autism gene analysis by utilizing 

gene ontology (GO)[7] for attempting to functionally characterize these genes and autism network 

analysis to decipher which genes interact with each other in certain pathways in autism. Development 

in this area of research could potentially uncover more accurate molecular mechanisms behind why 

these mutations occur and how this leads to ASD.  

 

Data and Methods:  
Autism Literature: 

Investigation into literature to discover gene-ASD relationships was conducted through using the 

SFARI database. Number of genes in gene score category 1, 2 and 3 were plotted to imply which 

genes were implicated in ASD. Gene score from SFARI database was heavily curated to present 

which genes were most confident in their contribution to secondary ASD. To refine this search, gene 

score Syndromic (S) was not taken into consideration in this study as it covers idiopathic autism- 

autism of unknown origin[8]. The top 5 genes in gene score 1 based on number of reports published 

were extracted; these genes were consecutively investigated on NCBI PUBMED to find the number 

of reports published related to autism and the respective genes. Search field tags (MeSH) was 

employed to refine the literature search. Publications over a span of 12 years in relation to these genes 

were plotted. Further investigation into citation data such as Eagle Score[8][9] was utilized for ensuring 

confidence of the relevance of the gene to ASD.  

 

Autism Genes: 

In order to functionally classify the genes associated with ASD, the functional terms annotated to 

these SFARI genes were identified. Gseapy package’s BioMart tool[10][11] was utilized to retrieve 

NCBI Entrez Gene IDs (UIDs) and merge these IDs with the SFARI gene symbols. Duplicates were 

removed in this list and were further analyzed. Then, by retrieving the gene2go file from NCBI 

(through urllib package), gene ontology terms annotated with SFARI genes could be extracted. GO 

IDs which did not present evidence (NAS and ND terms) were remove to improve reliability of our 

results.  The merged results which contain the UIDs from gene2go NCBI file and SFARI gene list 

were grouped by their gene score from SFARI. Top 10 commonly annotated GO terms were recorded 

for each gene score list in descending order.  Subsequently, the 3 different text files were exported 

from code to carry out inferences on the functional classification of these genes through PantherDB. 

Protein Analysis Through Evolutionary Relationships (PantherDB)[12] provides functional 

classification of genes through the Gene Ontology (GO) project. These 3 different text files 

(GeneScore1, GeneScore2, GeneScore3) were uploaded to PantherDB to present functional 

classification viewed in graphic charts. The ontology domain “Biological Processes” was used. To 

further investigate the GO annotations to functionally classify the genes, specifically for the top 5 

genes in their relation to ASD, the HumanCyc[13] pathway database was investigated to compare the 



GO terms associated with these 5 genes. This was conducted to obtain further insights into molecular 

pathways and gene ontology (GO) that overlap. We considered 4 pathway databases[14][15]: KEGG[15], 

PantherDB[12], HumanCyc pathway[13] and GO Domain: Biological Processes (BP)[7][14][15]. 

 

Autism Network: 

As pathways are central to human’s responses to stimuli, pathway-based analysis was approached to 

understand how complex diseases such as ASD may be related to each other through their underlying 

molecular mechanisms. Network connectivity analysis (NCA) was conducted to test for direct 

functional association between top identified genes in gene score 1. This was implemented to assess 

the both the functional profile and significance of these genes through STRING and PantherDB 

software. STRING (Search Tool for Retrieval of Interacting Genes/ Proteins) database[16] was 

implemented as the classification systems are based on high-throughput text-mining as well as 

hierarchical clustering on the association network itself. Network statistics were analyzed in terms of 

number of nodes, number of edges and number of degrees. Through MCL clustering, the top two 

clusters were extracted. PantherDB Functional Classification through Bar Charts was implemented 

with Pathway ontology to annotating genes to pathways. From Markov (MCL) clustering[17], the top 
cluster in the network would be used to create a new, separate network in Cytoscape[15]. In order to 

functionally characterize the cluster, stringApp[15] was implemented to perform functional enrichment 

analysis with a false discovery rate (FDR) threshold of 5%. Then, the filter functionality was used to 

eliminate redundant terms (using default redundancy cutoff of 0.5).  

 

Results: 
Autism Literature: 

From the 1095 genes found from SFARI database, the number of genes in gene score 1, 2, and 3 are 

214, 695 and 91 genes respectively. The top 5 genes found in gene score 1 category are SHANK3, 

MECP2, NRXN1, SCN2A and SCN1A with SHANK3 having the highest number of reports at 120 in 

the curated SFARI database, as shown in Figure 2 below. When investigated with PUBMED, 495 

reports were published which is lower than the number of reports published for the 2nd most reported 

gene, MECP2 on SFARI. MECP2 has 524 papers published on PUBMED. This is presented by Table 

2, where the number of PUBMED papers for the top 5 genes from SFARI are shown. From 

supplementary table I (Appendix) regarding a breakdown of published PUBMED papers on the 5 

genes and the bar chart indicating the number of papers published, SHANK3 has shown an increasing 

number of publications over the last 12 years. For MECP2 gene, the number of published papers have 

declined over the past 12 years with a steady increase from 2010 and a moderate decline until 2022. 

The other 3 genes, NRXN1, SCN2A and SCN1A display a similar decline to MECP2 but with lower 

publications over the last 12 years.  

 

Whilst investigating the other citation data, it is also quite surprising that the eagle score for the 2nd 

and 5th most reported gene on SFARI, had NaN values for their eagle score. The NaN values shown in 

the Eagle score category for MECP2 and SCN1A indicates there is no current evidence to support a 

causal role in for this gene in ASD[9]. Although this may be the case contradicting results showing 

gene-ASD association on PUBMED shown in Table 2, this could potentially be due to not-up-date, 

efficient curation of the eagle scores from the SFARI research group. Therefore, the role of gene in 

ASD does not have convincing evidence was demonstrated but rather potentially a range of 

neurodevelopmental phenotypes that are related to autism.  From Table 1, SHANK3, NRXN1 and 

SCN2A have shown significantly high values for the eagle score above 70, which indicates the 

functional role of the gene in ASD has been demonstrated repeatedly in research and clinical settings. 

This is quite indicative of the roles of these genes in ASD. Collating data from bar chart shown in 

Figure 2, and Table 2, MECP2 is quite indicative of its gene-ASD association, which the highest 

number of reports on PUBMED, relatively high publications shown through the years despite having 

a NaN eagle score. It is quite important to note as well that this gene was also reported initially as a 

novel gene in 1993 for its association with ASD, and the number of publications since has increased 

from then, where improved biomedical research quality can be assumed throughout the years to 

further infer this genetic association with ASD. 

 



 

Figure 1:  

Table 1: 

 

Figure 2:  

 

 

 

Table 2:  

Genes  Number of 

PUBMED papers 

SHANK3 495 

MECP2 524 

NRXN1 184 

SCN2A 104 

SCN1A 80 

 

 

 

Autism Genes: 

From Table 3 below, through a biological standpoint, most of the GO terms annotated with genes in 

gene score 1, 2, 3 are quite generic. Terms such as nucleus (GO: 0005634) and protein binding (GO: 

0005515) which are found in the 3 gene score categories are generic- these terms are commonly 

annotated in most cellular and molecular biological/ biomedical literature[18]. In this case, when text-

mining for GO annotations in publications and databases such as KEGG and REACTOME, molecular 

and genetic mechanisms behind autism research will be more likely have GO annotations regarding 

these cellular components which make up more than half of the 10 annotated terms in these gene 

score categories. These would most likely be parent terms when investigating more specific GO 

annotations relevant to the functional classification of autism genes. This is further proven by Guzzi 

et. al who has mentioned that many annotations are shallow in a directed acyclic graph (DAG). GO 

utilizes 3 DAGs to define functions of a gene product: molecular function ontology (MFO), biological 

process ontology (BPO) and cellular component ontology (CCO)[18][19]. Therefore, this may limit the 

accuracy of the inferences made about the functionality of these autism genes. Furthermore, as 

calculation of information-based methods (IC) in Gene Ontology website depends on annotation 

Figure 1: Bar chart presents number of genes in SFARI Gene Score 1, 2 and 3 

Table 1: Top 5 ranked genes based on number of Reports on SFARI, citation data includes Eagle score, and 

number of publications heavily curated by SFARI 

Table 2: Top 5 ranked genes (SHANK3, MECP2, NRXN1, SCN2A & SCN1A) and the number of PUBMED 

reports 

Figure 2: Number of PUBMED publications from 2010-2022 for top 5 Ranked genes on SFARI: SHANK3, 

MECP2, NRXN1, SCN2A and SCN1A; summarized breakdown of number of PUBMED publications of each 

gene through 2010-2022 shown in Supplementary Table 1 (Appendix)  



corpus which links the large number of gene ontology terms given (7319 GO terms in Gene Score 1; 

17603 GO terms in Gene Score 2, and 2601 GO terms in Gene Score 3), this has an issue in terms of 

the same GO term having different IC values when different corpora are used[19].  

 

With investigating the top most commonly annotated GO terms, the results obtained from “Functional 

Classification” with Biological Processes ontology, these GO terms indicate that these genes are 

responsible in the cellular and metabolic processes in multicellular organisms such as Homo sapiens. 

For example, GO terms such as plasma membrane (GO: 0005886) was frequently found in all gene 

score categories as this is a crucial organelle within higher eukaryotes. Therefore, this does not 

provide any functional implications surrounding autism genes in general despite the frequency of 

these GO terms being high.  

 

Table 3: Top 10 Commonly annotated terms with respective SFARI Gene Score Category 1, 2, and 3; 

GO term IDs, term description and GO term count (frequency of GO terms in relevant gene-ASD 

publications) i) Gene Score 1; ii) Gene Score 2; iii) Gene Score 3 

 

 

 

 

 

 

 

 

 

 

Figure 3: Number of Unique Entrez ID genes annotated to GO annotated terms in biological 

processes ontology domain through PantherDB GO-SLIM analysis; three bar charts represent number 

of genes in gene score 1, 2, 3 with annotated GO terms in Biological processes ontology.  

i) Gene Score 1, ii) Gene Score 2; iii) Gene Score 3 (colour coded from above). 

i)      ii) 
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From Figure 3 above, PantherDB GO-Slim has provided relatively less specific results regarding GO 
terms annotated with these autism genes[20]. For example, in Figure 3i, GO terms in the biological 

processes ontology, such as “biological regulation” (GO: 0065007) and “locomotion” (GO: 0040011) 

are more relevant to autism compared to the GO terms when finding the top 10 commonly annotated 

terms. However, there is higher consistency with the PantherDB results provided. There is more 

agreement with the top GO annotations in PantherDB than the top 10 commonly GO terms shown in 

Table 3. This is quite indicative of the limitations of implementing GO-Slims[20][21]. With a list of GO 

terms provided with respect to the gene2go file, enriched with overexpressed genes, if a child term 

has highly statistically significant enrichment, the parent term potentially would appear significantly 

enriched purely for including all the genes from the child term. GO-slims, are limited to general GO 

terms which are less interesting than more specific terms- which GO-Slim has removed[21].  

 

For the investigating of GO annotations with respect to the top 5 genes found in autism literature, 

HumanCyc database was used[13]. SHANK3 has 56 GO terms associated with the biological 

processes’ ontology. From Table 3i above regarding top 10 most commonly annotated terms in gene 

score 1 category, it is known that SHANK3 colocalizes in the plasma membrane[22]. This is also 

presented in other databases such HumanCyc and KEGG which were utilized to crosscheck this 

study. From the table above, GO terms in biological processes ontology was not informative as 

compared to GO terms associated with SHANK3 gene in the HumanCyc database. In the biological 

processes ontology domain, GO terms associated with SHANK3 included relatively specific GO 

terms such as dendritic spine morphogenesis (GO: 0060997)[23] and positive regulation of synapse 

structural plasticity (GO: 0051835)[24] which are more specific to the molecular mechanism to ASD. 

This was also demonstrated in the other 4 genes where the GO terms annotated with respective genes 

in the HumanCyc database were more relevant to autism. This provides a higher confidence measure 

for gene-ASD association.  

 

When investigating duplicates found when merging the SFARI dataset to gene2go file for obtaining 

Unique Entrez IDs, there were 8 duplicate IDs found for 8 gene symbols from SFARI dataset which 

are shown in the Supplementary Table 2. Further investigation into these genes on NCBI, it was 

shown that these gene IDs were equivalent to each other. For example, for gene symbol ST7, when 

queried on NCBI, ST7 (Gene ID: 7982) was also known as ST7OT3 (Gene ID: 93655). Therefore, in 

order to decrease redundancy in the results in this section, the duplicates were removed.  

 



Autism Network:  

 

Table 5: STRINGDB cluster analysis results  

Number of Nodes 213 

Number of Edges 1555 

Average Node Degree  14.6 

 

Figure 4: Biological network representing 

protein-protein interactions between genes in 

gene score 1. Spheres represent nodes where 

different colours indicate different clusters, i.e. red 

(Cluster 1) and edges are represented by lines.  

 

The concept of functional coupling between genes based 

on conservation of gene clusters can be used to analyze the 

gene-ASD associations[25]. With STRING, the ability to assess 

and compare the significance of individual interactions as 

STRING provides a graphical representation of network of 

inferred protein interactions which provide a high-level view of 

functional linkage, facilitating the analysis in biological 

processes[26]. As protein-protein interactions are not limited to direct 

physical interactions, proteins associated with ASD could regulate each other 

transcriptionally, or participate in a multiprotein complex assembly[26].  From Table 5, which provides 

statistics about this network accumulated from genes in Gene Score 1 (214 genes), demonstrated 213 

nodes and 1555 edges which indicate relatively high number of connections either in terms of 

regulation or co-expression within the network.  

 

Furthermore, protein-protein interaction enrichment p-value is less than 1.0e-16 which indicates 

proteins have more interactions among themselves when compared to a random combination of 

proteins[26][17]. This provides substantial evidence that the gene products in gene score 1 are 

biologically and functional relevant together. As shown in Figure 5, when the top 2 clusters were 

extracted in tsv format for PantherDB functional classification analysis, using Pathway ontology, 

MCL Cluster 1 (which has 33 genes) showed 4 genes each interacting in Huntingtin disease (P00029) 

and Ionotropic glutamate receptor pathway (P00037) whereas MCL Cluster 2 (26 genes) showed 7 

genes interacting with each other in Wnt signaling (P00057). Biomedical literature evidence has 

suggested that the Wnt signaling pathway[27][28] is crucial during nervous system development- 

mutations in genes responsible for this pathway (7 genes found in Gene Score 1) would lead to 

adverse effects in neurodevelopment[28]. For MCL Cluster 1, there is no direct biomedical literature 

which indicates a direct relationship between Huntington’s disease[29] and ASD but there are some 

overlaps in terms of both these diseases being a disorder of the nervous system. However, in 

Ionotropic glutamate receptor pathway, there is direct evidence of the genes responsible in this 

pathway, where if mutated, will cause alterations in glutamate levels[30], which leads to disrupt 

neuronal function in autism and induce autism phenotypes. To further analyze the results from 

PantherDB, KEGG pathways obtained from STRING was used. The KEGG pathway annotated which 

showed the lowest false discovery rate (FDR) was cell adhesion molecules pathway (hsa04514) which 

showed a moderately good strength value at 1.41 and 4.30e-05 for FDR value. As strength value 

measures how large enrichment effect is, it can be implicated that there are a high number of proteins 

annotated with a term in MCL Cluster 1. FDR values, which describe how significant the enrichment 

is, shows that the results here are statistically significant. The other KEGG pathways were also 

relevant to neuronal development such as synaptic vesicle cycle(hsa04721) and glutamatergic 

synapses (hsa04724). 

 



Figure 5 (PantherDB Functional Classification based on Pathway Ontology): a) Barchart demonstrating 

Number of annotated Genes (in Cluster 1) within different GO pathways b) Barchart demonstrating 

Number of annotated Genes (in Cluster 2) within different GO pathways 

 

When further investigating the top cluster (MCL Cluster 1 genes) on CytoScape[15], this provided 

more accurate results in terms of functionally characterizing these cluster genes. The most reliable 

pathway was shown in Disruption of postsynaptic signaling by Copy Number Variations (CNV)- 

Homo sapiens (WP4875) where 10 of the 33 cluster genes were found to interact in a pathway. A 

pathway visualization is shown in Figure 6 below, where genes such as NRXN1 and GRIN2A interact 

with each other in this pathway and where certain genes here are localized as a whole. This pathway 

was extracted as it provided the lowest p-value at 1.98e-16 which indicates the effect is large and 

result is of major theoretical or clinical importance. Similarity score as compared to the other 

pathways was also the highest at 0.39 where a major proportion of the genes (10/33) in this cluster has 

shown evidence to interact with each other (indirectly or directly). The other pathways shown are 

similar to ones shown in Figure 5a where glutamatergic synapse pathway is related to at least 3 of the 

pathways from PantherChart 5a above (P00037, P00041, P00039). Utilizing stringApp to perform a 

functional enrichment analysis with an FDR threshold of 5%, this was used to obtain the most 

significant term in KEGG pathways which was Ionotopic glutamate receptor pathway (P00037) which 

covers a substantial proportion of pathways shown in Figure 5a where alterations in glutamate levels 

would lead to autistic phenotypes. This is quite indicative of genes in cluster are functionally 

responsible for the glutamate receptor pathway.  

 

MCL Cluster 2 genes, on the other hand, 

yielded insignificant and uninformative results 

as compared to Cluster 1 genes. Through 

CytoScape, this yielded the Prion disease 

pathway- Homo sapiens with 5 proteins 

interacting with each other, which is known to 

be indirectly related to autism, however, this 

is mostly in terms of an overlap in 

neurodevelopmental phenotypes rather than 

ASD itself. KEGG pathways provided on 

StringDB, did not yield significant results as 

compared to MCL Cluster 1. Overall, autism 

networks showed more promising GO 

annotations in terms of functional 

characterization of these genes compared to 

autism genes.  

 

 
Figure 6: CytoSCAPE-illustrated diagram for evidence of genes  

in gene score 1 interacting with each other. NRXN1/2/3, GRIN1, GRIN2A/B,  

NLGN2/3/4X and SYNGAP1 interact with each other directly/ indirectly as shown. 

a)
0 

b) 



 

Discussion: 

When mining autism literature, it was shown that SHANK3 and MECP2 produced the most number 

of reports on PUBMED in gene score 1. This potentially illustrates a clearer understanding over the 

years in terms of the research development for deciphering the molecular and genetic mechanism 

behind ASD. This also would provide a higher confidence metric in terms of gene-ASD association 

through literature mining.  For example, it can be implied that SHANK3 and MECP2 has a higher 

confidence that they are associated with autism due to the number of reports published on PUBMED. 

SFARI’s gene ranking also shows that there is a substantial proportion of genes in gene score 

category 2 at 695 genes out of the 1095 provided. This should be further evaluated as SFARI’s 

database was manually curated- was it due to limitations of the research foundation in terms of 

curating the scores or was there not sufficient publications/ evidence? Furthermore, literature could be 

evaluated through a comprehensive literature data-mining analysis. Several research papers have 

shown that through literature metric analysis[31], has shown a broad genetic network functionality 

associated with diseases. This was conducted through considering factors such as number of citations, 

quality weight, and novelty of gene in terms of how recent was research conducted for the gene 
associated with ASD[31]. This literature metric analysis can be conducted using Elsevier’s proprietary 

MedScan natural language processing (NLP) system)[32] where data extracted included genes and their 

association types including binding and regulation where network analysis and KEGG pathways can 

be explored on further.  

For autism gene analysis, BioMart, a data mining tool for ENSEMBL, allowed fast and efficient 

querying when mapping the SFARI gene symbols to Entrez Gene IDs (UIDs)[10][11]. However, there 

are a few limitations to using this module in the gseapy package as there were duplicates risen. 

BioMart could not differentiate the unique gene IDs on NCBI for the same gene symbols on SFARI 

on Supplementary Table 2. This increases noise and redundancy in our results. Furthermore, in some 

cases, there were missing GeneID entries where manual deduction on NCBI website had to be 

retrieved such as for MAPT-AS1 and PTCHD1-AS. These were antisense strands where unique gene 

IDs had to be manually curated into the text file which are RPS10P2 and MSNP1. In this case, the 

disadvantage of using BioMart is that this module in gseapy only considers genes which are already 

annotated under ENSEMBL. In the top 10 most commonly annotated terms for genetic analysis, these 

terms were also mostly generic GO terms which could potentially be parental terms, where this did 

not aid in functionally characterizing the genes more specifically. The GO terms annotated here has 

helped in identifying that the genes supposedly related to ASD are responsible in the molecular and 

cellular processes in humans- in terms of protein localization within the cell but not how the genes 

function within the cell. PantherDB Go-Slim, in these results, also did not show much promise in 

functionally characterizing these GO terms to the genes. However, they were more specific than the 

aforementioned method. PantherDB extracted GO terms such as locomotion, and biological adhesion 

which would be more specific to the mechanism and effects of ASD but not necessarily in specific 

way. Therefore, analyzing the KEGG pathways of genes recognized from autism literature would 

provide a better standpoint in understanding the functional relevance of these genes and the mutations 

caused in these genes into the genetic and molecular mechanisms behind ASD, such as shown in the 

example of SHANK3.  

In relevance to both network analysis and gene analysis, measuring semantic similarity between GO 

terms would also be useful in functional bioinformatics research[33][19]. This would allow a more 

quantitative approach in understanding GO annotations in both result sections. For autism network 

analysis, results produced provided a better insight into how these genes interact with each other and a 

better understanding regarding the mechanism behind mutations in genes responsible for autism. This 

also provided us with higher confidence of some genes such as NRXN1 are crucial and when 

mutated, will disrupt a neuronal signaling pathway which causes adverse effects in locomotion. 

Further network analysis in terms of such as TOMAS which a novel Topology-aware Meta-analysis 

approach for pathway analysis was known to overcome noise and bias to identify pathways implicated 

in diseases[34]. Overall, further research should be conducted in order to overcome challenges and 

limitations in the methods used for biological network analysis. This would be useful in terms of 

understanding complex diseases such as autism. 
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Appendix/ Supplementary material: 

 

Table 1: Number of publications for top 5 ranked genes in SFARI from 2010 to 2022 

Genes 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

SHANK3 9 21 21 32 35 32 48 44 57 56 57 67 73 

MECP2 23 38 30 37 43 51 48 41 26 39 32 22 28 

NRXN1 10 21 17 20 18 17 8 15 13 22 12 13 12 

SCN2A 1 1 1 3 6 7 8 9 11 18 12 22 16 

SCN1A 0 3 7 4 3 5 5 6 6 9 13 12 9 

 

Table 2: Duplicate Entrez Gene IDs of SFARI Gene Symbols 

Gene Symbol  ID_1 ID_2 

ST7 93655 7982 

TECTA 116804918 7007 

H4C5 554313 8367 

RHOXF1 104797536 158800 

CACNA1C 100874369 775 

USP9Y  64595 8287 

H4C3 554313 8364 
 

 

 

 


